
	

	

	
STORAGE-BASED	CONVERGENCE	BETWEEN	HPC	AND	CLOUD	TO	HANDLE	BIG	DATA	

	

Deliverable	number	 D2.2	

Deliverable	title	 WP2	DATA	SCIENCE	–	Final	Report	

Editor	 Gabriel	Antoniu	(Inria)	

Main	Authors	 Alvaro	 Brandon	 (UPM),	 Ovidiu	Marcu	 (Inria),	 Pierre	Matri	 (UPM),	 Yacine	
Taleb	(Inria),		Alexandru	Costan	(Inria),	Maria	S.	Pérez	(UPM)	

	

Grant	Agreement	number	 642963	
Project	ref.	no	 MSCA-ITN-2014-ETN-642963	
Project	acronym	 BigStorage	
Project	full	name	 BigStorage:	 Storage-based	 convergence	 between	 HPC	 and	 Cloud	 to	

handle	Big	Data	
Starting	date	(dur.)	 1/1/2015	(48	months)	
Ending	date	 31/12/2018	
Project	website	 http://www.bigstorage-project.eu	
	
	
Coordinator		 María	S.	Pérez	
Address	 Campus	de	Montegancedo	sn.		28660	Boadilla	del	Monte,	Madrid,	Spain	
Reply	to	 mperez@fi.upm.es	
Phone	 +34-91-336-7380	
	

	 	

	 			 	 							

Page	2	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Executive	Summary	
This	document	provides	an	overview	of	the	work	done	until	M48	of	the	Project	BigStorage	(from	01-01-
2015	until	31-12-2018)	in	WP2	Data	Science.	

WP2	was	dedicated	to	Data	Science,	with	a	particular	focus	on	data	processing	models,	energy-efficient	
data	 analytics	 and	 data-driven	 decision	 making.	 In	 the	 first	 part	 of	 the	 project,	 we	 investigated	 the	
limitations	and	bottlenecks	of	current	frameworks	for	general	workflow/streaming	Big	Data	applications	
(see	deliverable	D5.1).		We	analyzed	the	application	requirements	in	relation	with	the	use	cases	studied	
in	WP1,	then	made	progress	beyond	the	state	of	the	art	along	several	directions.		

• We	investigated	the	impact	of	the	different	architectural	choices	for	Big	Data	processing	engines	
on	end-to-end	performance	 to	understand	 the	 current	 limitations	 faced	by	 streaming	engines	
when	interacting	with	a	storage	system	for	holding	streaming	state.	We	proposed	a	set	of	design	
principles	for	a	scalable,	unified	architecture	for	data	ingestion	and	storage,	called	KerA.	Its	goal	
is	 to	 efficiently	 support	 diverse	 access	 patterns:	 low-latency	 access	 to	 stream	 records	 and/or	
high	throughput	access	to	(unbounded)	streams	and/or	objects.	This	contribution	was	published	
at	ICDCS	2018,	a	CORE	A-level	conference	[Mar18].	

• We	 investigated	 performance	 vs.	 fault	 tolerance	 trade-offs	 at	 storage	 level	 and	 proposed	 an	
innovative	 replication	 protocol	 for	 scale-out	 in-memory	 databases	 in	 support	 of	 Big	 Data	
analytics,	called	Tailwind.	This	contribution	was	published	at	ATC’18,	a	CORE	A-level	conference	
[Tal18].	

• We	investigated	and	proposed	machine-learning	techniques	to	model	optimal	decisions	for	task	
parallelization	 to	 process	 Big	 Data	 workloads.	 This	 contribution	was	 published	 in	 FGCS,	 a	 Q1	
impact	factor	journal	[Bra18].		

• We	 investigated	 and	 proposed	 a	 graph-based	 root	 cause	 analysis	 framework	 that	 leverages	
monitored	metrics	of	 the	 system	 to	 facilitate	 the	 troubleshooting	of	problems	 in	microservice	
architectures.	This	contribution	has	been	submitted	to	the	Journal	of	Systems	and	Software,	a	
Q1	impact	factor	journal.	

This	 report	 provides	 an	overview	of	 these	 contributions	 that	we	 consider	 representative	 of	WP2.	We	
chose	 to	 focus	 in	 a	more	 detailed	way	 on	 the	 two	 contributions	 that	were	materialized	 through	 two	
software	 research	 prototypes	 (KerA	 and	 Tailwind)	 and	 we	 provide	 a	 brief	 overview	 of	 the	 last	 two	
contributions	(machine	learning	for	task	parallelization	and	graph-based	root	cause	analysis	framework).		

	 	

	 			 	 							

Page	3	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Document	Information	
IST	Project	Number	 MSCA-ITN-2014-ETN-642963	
Acronym	 BigStorage	
Title	 Storage-based	convergence	between	HPC	and	Cloud	to	handle	Big	Data	
Project	URL	 http://www.bigstorage-project.eu	
Document	URL	 http://bigstorage-project.eu/index.php/deliverables	
EU	Project	Officer	 Mr.	Szymon	Sroda	
	
Deliverable	 D2.2	Intermediate	Report	on	WP2	
Workpackage	 WP2	Data	Science	
Date	of	Delivery	 Planned:	31.12.2018	

Actual:	30.12.2018	
Status	 Version	0.5	final		□		draft		n	
Nature	 prototype	□		report	n		dissemination	□	
Dissemination	level	 public	□		consortium	n	
Distribution	List	 Consortium	Partners	
Document	Location		 http://bigstorage-project.eu/index.php/deliverables	
Responsible	Editor	 Gabriel	Antoniu	(Inria),	gabriel.antoniu@inria.fr,	Tel:	+33299847244	
Authors	(Partner)	 Alvaro	Brandon	(UPM),	Ovidiu	Marcu	(Inria),	Pierre	Matri	(Inria)	
Reviewers	 Alexandru	Costan	(Inria),	María	S.	Pérez	(UPM)	
Abstract		
(for	dissemination)	

Executive	Summary	

Keywords	 Data	 processing,	 data	 science,	 Big	 Data	 processing,	 stream	 processing,	
workflow	processing,	Spark,	Flink,	machine	learning	

	
Version	 Modification(s)	 Date	 Author(s)	
0.1	 Initial	template	and	structure	 22.12.2018	 Gabriel	Antoniu,	Inria	
0.2	 Sections	from	all	authors	 26.10.2018	 All	authors	
0.3	 Internal	version	for	review	 28.12.2018	 Gabriel	Antoniu,	Inria	
0.5	 Comments	from	internal	reviewers	 29.12.2018	 Internal	reviewers	
0.6	 Final	version	to	commission	 30.12.2018	 Gabriel	Antoniu,	Inria	
0.7	 Final	version	reviewed	 31.12.2018	 María	S.	Pérez,	UPM	
	

	 	

	 			 	 							

Page	4	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Project	Consortium	Information	
Participants	 Contact	
Universidad	Politécnica	de	
Madrid	(UPM),	Spain	

	

María	S.	Pérez	
Email:	mperez@fi.upm.es	

Barcelona	
Supercomputing	 Center	
(BSC),	Spain	 	

Toni	Cortes	
Email:		toni.cortes@bsc.es	

Johannes	 Gutenberg	
University	 (JGU)	 Mainz,	
Germany	

	

André	Brinkmann	
Email:	brinkman@uni-mainz.de	

Inria,	France	

	

Gabriel	Antoniu	
Email:	gabriel.antoniu@inria.fr	
Adrian	Lebre	
Email:	adrien.lebre@inria.fr	

Foundation	 for	 Research	
and	 Technology	 -	 Hellas	
(FORTH),	Greece	 	

Angelos	Bilas	
Email:		bilas@ics.forth.gr	

Seagate,	UK	

	

Sai	Narasimhamurthy	
Email:	
sai.narasimhamurthy@seagate.com	
	

DKRZ,	Germany	
	

	

Thomas	Ludwig	
Email:		ludwig@dkrz.de	

CA	 Technologies	
Development	 Spain	 (CA),	
Spain	

	

Victor	Muntes	
Email:		Victor.Muntes@ca.com	

CEA,	France	

	

Jacque	Charles	Lafoucriere		
Email:	
Charles.LAFOUCRIERE@CEA.FR	

Fujitsu	 Technology	
Solutions	GMBH,	Germany	

	

Sepp	Stieger	
Email:		sepp.stieger@ts.fujitsu.com	

	

	 	

	 			 	 							

Page	5	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Table	of	Contents	
EXECUTIVE	SUMMARY	..	2	

DOCUMENT	INFORMATION	..	3	

PROJECT	CONSORTIUM	INFORMATION	..	4	

TABLE	OF	CONTENTS	..	5	

1	 INTRODUCTION	...	6	

1.1	 WP2	OVERVIEW	...	6	

1.2	 ESR	PARTICIPATION	AND	CONTRIBUTIONS	..	7	

2	 BIG	DATA	PROCESSING:	CHALLENGES	..	9	

3	 KERA:	SCALABLE	DATA	INGESTION	FOR	STREAM	PROCESSING	...	10	

3.1	 CONTEXT	AND	PROBLEM	...	10	

3.2	 STREAM	INGESTION:	BACKGROUND	AND	STATE	OF	THE	ART	..	11	

3.3	 DESIGN	PRINCIPLES	FOR	STREAM	INGESTION	...	12	

3.4	 KERA:	OVERVIEW	..	13	

3.5	 EXPERIMENTAL	EVALUATION	..	15	

3.6	 SUMMARY	...	18	

4	 TAILWIND:	 FAST	 AND	 ATOMIC	 RDMA-BASED	 REPLICATION	 IN	 SUPPORT	 OF	 IN-MEMORY	 BIG	 DATA	
ANALYTICS	...	19	

4.1	 CONTEXT	AND	PROBLEM	...	19	

4.2	 THE	PROMISE	OF	RDMA	AND	CHALLENGES	...	20	

4.3	 TAILWIND	..	23	

4.4	 EVALUATION	..	24	

4.5	 DISCUSSION	...	30	

4.6	 SUMMARY	...	31	

5	 USING	MACHINE	LEARNING	TO	OPTIMIZE	PARALLELISM	IN	BIG	DATA	APPLICATIONS	32	

5.1	 CONTEXT	AND	PROBLEM	...	32	

5.2	 OPTIMISATION	OF	TASK	PARALLELISATION	OF	BIG	DATA	JOBS	...	32	

5.3	 ROOT	CAUSE	ANALYSIS	FOR	MICROSERVICE	ARCHITECTURES	...	33	

5.4	 SUMMARY	..	¡ERROR!	MARCADOR	NO	DEFINIDO.	

6	 REFERENCES	...	34	

	 			 	 							

Page	6	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

1 Introduction		

1.1 WP2	Overview		
This	subsection	provides	an	overview	of	WP2	as	was	presented	in	the	project	proposal.	

The	Data	Science	has	emerged	as	the	fourth	paradigm	for	scientific	discovery,	based	on	data-intensive	
computing	[Tan09].	Motivated	by	the	emergence	of	Big	Data	applications,	Data	Science	involves	several	
data-centric	 aspects:	 storage,	 manipulation,	 analysis	 with	 statistics	 and	 machine	 learning,	 decision-
making,	 among	 others.	 During	 the	 recent	 years,	 the	 MapReduce	 [Dea04]	 programming	 model	 (e.g.,	
Amazon	Elastic	MapReduce,	Hadoop	on	Azure	-	HDInsight)	has	emerged	as	the	de	facto	standard	for	Big	
Data	 processing.	 However,	many	 Data	 Science	 applications	 do	 not	 fit	 this	model	 and	 require	 a	more	
general	data	orchestration,	independent	of	any	programming	model.	Modeling	them	as	workflows	is	an	
option	[3,4],	but	current	cloud	infrastructures	lack	specific	support	for	efficient	workflow	data	handling.	
State-of-the-art	solutions	rely	on	high-latency	storage	services	(Azure	Blobs,	Amazon	S3)	or	 implement	
application-specific	 overlays	 that	 pipeline	 data	 from	 one	 task	 to	 another.	 However,	 in	 large-scale	
distributed	 environments	 consisting	 of	 multiple	 datacenters,	 this	 would	 suffer	 from	 latencies	 when	
accessing	large	remote	datasets	frequently.		

Data	 Science	 involves	 unprecedented	 complexity	 in	 the	 Big	 Data	 management	 process,	 which	 is	 not	
addressed	 by	 existing	 cloud	 data	 handling	 services.	 This	 WP	 aimed	 to	 investigate	 new	 models,	
mechanisms	 and	 policies	 that	 are	 needed	 to	 support	 dynamic	 coordination	 for	 data	 processing,	
dissemination,	analysis	and	exploitation	across	widely	distributed	sites	with	reasonable	QoS	levels.		

WP2	was	organized	in	3	tasks,	as	follows.	

Task	2.1.	Big	Data	Processing	Models		 	
The	objective	of	 this	 task	was	 to	design	next-generation	data	processing	models	 for	 applications	 that	
require	 general	 data	 orchestration,	 independent	 of	 any	 programming	model.	 Based	 on	 the	 use	 cases	
studied	 in	WP1,	we	investigated	workflows	composed	of	many	tasks,	 linked	via	data-	and	control-flow	
dependencies,	 with	 a	 particular	 focus	 on	 stream	 data	 processing.	 We	 examined	 the	 limitations	 and	
bottlenecks	of	 state-of-the-art	 solutions;	we	defined	a	 set	of	 requirements	 for	efficient	 real-time	data	
processing,	 then	 we	 designed	 storage-based	 techniques	 enabling	 fast,	 efficient	 stream-based	
processing.	

Task	2.2	Green	Big	Data	Analysis	

This	task	focused	on	investigating	new	techniques	for	energy-efficient	Big	Data	analysis,	in	particular	the	
energy-efficiency	vs.	performance	trade-offs	for	in-memory	storage	systems	used	for	Big	Data	analytics.	
As	 this	 task	 is	 strongly	 focused	 on	 energy-related	 aspects,	 for	 consistency,	 we	 chose	 to	 describe	 the	
related	results	in	deliverable	D5.2,	which	gathers	together	all	contributions	related	to	energy-efficiency.	

	 	

	 			 	 							

Page	7	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

Task	2.3.	Data-Driven	Decision	Making			

Predictive	 insights	 and	 accurate	 predictive	 models	 from	 data	 are	 essential	 in	 nowadays	 business	
applications.	This	task	aimed	to	train	researchers	in	the	expertise	of	data-driven	decision,	connecting	the	
low-level	 (scalable	 data	 infrastructures)	 to	 the	 real	 needs	 of	 applications.	 In	 this	 context,	 in-memory	
cluster	computing	platforms	have	gained	momentum	in	the	last	years,	due	to	their	ability	to	analyse	big	
amounts	of	data	in	parallel.	One	of	the	key	aspects	is	optimization	of	the	task	parallelism	of	application	
in	such	environments.	In	this	task,	we	focused	on	machine	learning	methods	for	recommending	optimal	
parameters	 for	 task	 parallelization	 in	 big	 data	 workloads.	 Additional	 key	 technologies	 that	 are	 being	
widely	 adopted	 in	 Big	 Data	 architectures	 are	 containerisation	 and	 microservice	 architectures.	
Establishing	 the	 root	 cause	 for	 failures	 or	 performance	 problems	 in	 these	 kinds	 of	 architectures	 can	
become	very	complex,	since	the	different	parts	of	an	application	are	split	into	small	units	or	containers	
that	 perform	 a	 specific	 task.	 To	 solve	 this	 problem,	 we	 propose	 a	 graph-based	 root	 cause	 analysis	
framework	that	leverages	monitored	metrics	of	the	system	to	facilitate	the	troubleshooting	of	problems	
in	microservice	architectures.	

1.2 ESR	Participation	and	contributions	
The	full	list	of	ESRs	in	the	current	form	of	the	project	is:	

ESR		 Name	 Institution	 Main	advisor	
1	 Ovidiu-Cristian	Marcu	 INRIA	 Gabriel	Antoniu/Alexandru	Costan	
2	 Alvaro	Brandon		 UPM	 Maria	S.	Perez	
3	 Pierre	Matri	 UPM	 Maria	S.	Perez	
4	 Muhammad	Umar	Hameed	 Mainz	 Andre	Brinkmann	
5	 Rizkallah	Touma	 BSC	 Anna	Queralt/Toni	Cortes	
6	 Fotios	Papaodyssefs		 Seagate	 Malcolm	Muggeridge	
7	 Linh	Thuy	Nguyen		 INRIA	 Adrien	Lebre	
8	 Athanasios	Kiatipis	 Fujitsu	 Sepp	Stieger	
9	 Fotis	Nikolaidis	 CEA	 Philippe	Deniel	
10	 Dimitrios	Ganosis		 FORTH	 Angelos	Bilas/Manolis	Marazakis	
11	 Nafiseh	Moti	 Mainz	 Andre	Brinkmann	
12	 Georgios	Koloventzos		 BSC	 Ramon	Nou/Toni	Cortes	
13	 Mohammed-Yacine	Taleb	 INRIA	 Gabriel	Antoniu	
14	 Yevhen	Alforov		 DKRZ	 Thomas	Ludwig	/	Michael	Kuhn	
15	 	Michał	Zasadziński	 CA		 Victor	Muntes	
	

The	ESRs	participating	in	WP2	are	ESR	1,	ESR2,	ESR3,	ESR13.	They	are	all	also	involved	in	other	WPs.	

Note:	This	 report	aims	 to	present	 the	achievements	 related	 to	Big	Data	processing	 in	 support	of	data	
science.	As	WP5	 is	 fully	dedicated	 to	energy-related	aspects,	 to	avoid	 redundancy,	we	decided	not	 to	
detail	the	energy	dimension	in	this	report	(the	results	of	task	2.2	being	described	in	deliverable	5.2).		

	 			 	 							

Page	8	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

	

	

2 Big	Data	processing:	challenges	
Our	 intermediate	 report	 (D2.1)	 presented	 a	 detailed	 survey	 of	 state-of-the	 art	 systems	 for	 Big	 Data	
processing,	which	helped	identify	a	set	of	gaps	and	corresponding	challenges	that	we	addressed	in	the	
second	phase	of	the	BigStorage	project.		

We	addressed	the	following	goals	in	WP2:	

• Based	 on	 the	 identified	 limitations	 and	 bottlenecks	 of	 current	 frameworks	 for	 general	
workflow/streaming	Big	Data	applications,	we	analyzed	the	application	requirements	in	relation	
with	the	use	cases	studied	in	WP1.		

• We	investigated	the	impact	of	the	different	architectural	choices	for	Big	Data	processing	engines	
on	end-to-end	performance	 to	understand	 the	 current	 limitations	 faced	by	 streaming	engines	
when	interacting	with	a	storage	system	for	holding	streaming	state.	We	proposed	a	set	of	design	
principles	for	a	scalable,	unified	architecture	for	data	ingestion	and	storage,	called	KerA.	Its	goal	
is	 to	 efficiently	 support	 diverse	 access	 patterns:	 low-latency	 access	 to	 stream	 records	 and/or	
high	throughput	access	to	(unbounded)	streams	and/or	objects.	This	contribution	was	published	
at	ICDCS	2018,	a	CORE	A-level	conference	[Mar18].	

• We	 investigated	 performance	 vs.	 fault	 tolerance	 trade-offs	 at	 storage	 level	 and	 proposed	 an	
innovative	 replication	 protocol	 for	 scale-out	 in-memory	 databases	 in	 support	 of	 Big	 Data	
analytics,	called	Tailwind.	This	contribution	was	published	at	ATC’18,	a	CORE	A-level	conference	
[Tal18].	

• We	investigated	and	proposed	machine	learning	techniques	to	model	optimal	decisions	for	task	
parallelization	to	process	Big	Data	workloads.	This	contribution	was	published	in	FGCS,	a	CORE	
A-level	international	journal	[Bra18].		

• We	 investigated	 and	 proposed	 a	 graph-based	 root	 cause	 analysis	 framework	 that	 leverages	
monitored	metrics	of	 the	 system	 to	 facilitate	 the	 troubleshooting	of	problems	 in	microservice	
architectures.	This	contribution	has	been	submitted	to	the	Journal	of	Systems	and	Software,	a	
Q1	impact	factor	journal.	

The	 following	 three	 sections	 provide	 an	 overview	 of	 these	 contributions	 that	 we	 consider	
representative	 of	WP2.	We	 chose	 to	 focus	 in	 a	more	 detailed	way	 on	 the	 two	 contributions	 that	
were	materialized	through	two	software	research	prototypes	(KerA	and	Tailwind)	and	we	provide	a	
brief	 overview	 of	 the	 last	 two	 contributions	 (machine	 learning	 for	 task	 parallelization	 and	 graph-
based	root	cause	analysis	framework).	

	 			 	 							

Page	10	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

3 KerA:	Scalable	Data	Ingestion	for	Stream	Processing	

3.1 Context	and	problem	
Big	 Data	 real-time	 stream	 processing	 typically	 relies	 on	message	 broker	 solutions	 that	 decouple	 data	
sources	from	applications.	This	translates	into	a	three-stage	pipeline	described	in	Figure	1.	First,	 in	the	
production	 phase,	 event	 sources	 (e.g.,	 smart	 devices,	 sensors,	 etc.)	 continuously	 generate	 streams	 of	
records.	 Second,	 in	 the	 ingestion	phase,	 these	 records	are	acquired,	partitioned	and	pre-processed	 to	
facilitate	consumption.	Finally,	 in	 the	processing	phase,	Big	Data	engines	consume	the	stream	records	
using	a	pull-based	model.	

Since	users	 are	 interested	 in	obtaining	 results	
as	 soon	 as	 possible,	 there	 is	 a	 need	 to	
minimize	 the	 end-to-end	 latency	 of	 the	 three	
stage	 pipeline.	 This	 is	 a	 non-trivial	 challenge	
when	 records	 arrive	 at	 a	 fast	 rate	 and	 create	
the	need	 to	 support	a	high	 throughput	at	 the	
same	 time.	 To	 this	 purpose,	 Big	 Data	 engines	
are	 typically	 designed	 to	 scale	 to	 a	 large	

number	 of	 simultaneous	 consumers,	 which	
enables	 processing	 for	millions	 of	 records	 per	
second	 [Ven17],	 [Mia17].	 Thus,	 the	weak	 link	
of	 the	 three	 stage	 pipeline	 is	 the	 ingestion	
phase:	 it	needs	to	acquire	records	with	a	high	
throughput	 from	 the	 producers,	 serve	 the	
consumers	with	a	high	throughput,	scale	to	a	large	number	of	producers	and	consumers,	and	minimize	
the	write	latency	of	the	producers	and,	respectively,	the	read	latency	of	the	consumers	to	facilitate	low	
end-to-end	latency.	

Achieving	all	these	objectives	simultaneously	is	challenging,	which	is	why	Big	Data	applications	typically	
rely	on	specialized	 ingestion	runtimes	 to	 implement	 the	 ingestion	phase.	One	such	popular	 runtime	 is	
Apache	Kafka	 [Kafka].	 It	quickly	 rose	as	 the	de-facto	 industry	standard	 for	 record	brokering	 in	end-to-
end	streaming	pipelines.	 It	 follows	a	simple	design	that	allows	users	to	manipulate	streams	of	records	
similarly	to	a	message	queue.	More	recent	ingestion	systems	(e.g.	Apache	Pulsar	[Pulsar],	DistributedLog	
[DLog])	 provide	 additional	 features	 such	 as	 durability,	 geo-replication	 or	 strong	 consistency	 but	 leave	
little	room	to	take	advantage	of	trade-offs	between	strong	consistency	and	high	performance.	

State	of	art	ingestion	systems	typically	achieve	scalability	using	static	partitioning:	each	stream	is	broken	
into	a	fixed	set	of	partitions	where	the	producers	write	the	records	according	to	a	partitioning	strategy,	
whereas	 only	 one	 consumer	 is	 allowed	 to	 access	 each	 partition.	 This	 eliminates	 the	 complexity	 of	
dealing	with	 fine-grain	 synchronization	at	 the	expense	of	 costly	over-provisioning	 (i.e.,	 by	allocating	a	
large	number	of	partitions	 that	are	not	needed	 in	 the	normal	 case	 to	 cover	 the	worst	 case	when	 the	

Figure 1. Stream processing pipeline: records are collected at
event time and made available to consumers earliest at ingestion
time, after the events are acknowledged by producers; processing
engines continuously pull these records and buffer them at buffer
time, and then deliver them to the processing operators, so results
are available at processing time.

	 			 	 							

Page	11	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

stream	 is	 used	 by	 a	 high	 number	 of	 consumers).	 Furthermore,	 each	 stream	 record	 is	 associated	 at	
append	 time	 with	 an	 offset	 that	 enables	 efficient	 random	 access.	 However,	 in	 a	 typical	 streaming	
scenario,	 random	 access	 is	 not	 needed	 as	 the	 records	 are	 processed	 in	 sequential	 order.	 Therefore,	
associating	 an	 offset	 for	 each	 single	 record	 introduces	 significant	 performance	 and	 space	 overhead.	
These	design	choices	limit	the	ability	of	the	ingestion	phase	to	deliver	high	throughout	and	low	latency	
in	a	scalable	fashion.	

We	 introduce	 KerA,	 a	 novel	 ingestion	 system	 for	 scalable	 stream	 processing	 that	 addresses	 the	
aforementioned	limitations	of	the	state	of	art.	Specifically,	it	introduces	a	dynamic	partitioning	scheme	
that	elastically	adapts	to	the	number	of	producers	and	consumers	by	grouping	records	into	fixed-sized	
segments	at	fine	granularity.	Furthermore,	it	relies	on	a	lightweight	metadata	management	scheme	that	
assigns	 minimal	 information	 to	 each	 segment	 rather	 than	 record,	 which	 greatly	 reduces	 the	
performance	and	space	overhead	of	offset	management,	therefore	optimizing	sequential	access	to	the	
records.	

3.2 Stream	ingestion:	background	and	state	of	the	art	
A	 stream	 is	 a	 very	 large,	 unbounded	 collection	 of	 records,	 that	 can	 be	 produced	 and	 consumed	 in	
parallel	 by	multiple	 producers	 and	 consumers.	 The	 records	 are	 typically	 buffered	 on	multiple	 broker	
nodes,	 which	 are	 responsible	 to	 control	 the	 flow	 between	 the	 producers	 and	 consumers	 such	 as	 to	
enable	high	throughput,	low	latency,	scalability	and	reliability	(i.e.,	ensure	records	do	not	get	lost	due	to	
failures).	To	achieve	scalability,	stream	records	are	logically	divided	into	many	partitions,	each	managed	
by	one	broker.	

Static	partitioning	

State-of-art	stream	ingestion	systems	(e.g.,	[Kafka],	[Pulsar],	[DLog])	employ	a	static	partitioning	scheme	
where	the	stream	is	split	among	a	fixed	number	of	partitions,	each	of	which	is	an	unbounded,	ordered,	
immutable	sequence	of	records	that	are	continuously	appended.	Each	broker	 is	responsible	for	one	or	
multiple	partitions.	Producers	accumulate	records	in	fixed-sized	batches,	each	of	which	is	appended	to	
one	partition.	To	reduce	communication	overhead,	the	producers	group	together	multiple	batches	that	
correspond	to	the	partitions	of	a	single	broker	in	a	single	request.	Each	consumer	is	assigned	to	one	or	
more	 partitions.	 Each	 partition	 assigned	 to	 a	 single	 consumer.	 This	 eliminates	 the	 need	 for	 complex	
synchronization	mechanisms	but	has	an	important	drawback:	the	application	needs	a	priori	knowledge	
about	the	optimal	number	of	partitions.	

However,	 in	 real-life	 situations	 it	 is	 difficult	 to	 know	 the	 optimal	 number	 of	 partitions	 a	 priori,	 both	
because	 it	 depends	 on	 a	 large	 number	 of	 factors	 (number	 of	 brokers,	 number	 of	 consumers	 and	
producers,	 network	 size,	 estimated	 ingestion	 and	processing	 throughput	 target,	 etc.).	 In	 addition,	 the	
producers	and	consumers	can	exhibit	dynamic	behavior	that	can	generate	 large	variance	between	the	
optimal	number	of	partitions	needed	at	different	moments	during	the	runtime.	Therefore,	users	tend	to	
over-provision	 the	 number	 of	 partitions	 to	 cover	 the	 worst	 case	 scenario	 where	 a	 large	 number	 of	
producers	 and	 consumers	 need	 to	 access	 the	 records	 simultaneously.	 However,	 if	 the	 worst-case	

	 			 	 							

Page	12	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

scenario	is	not	a	norm	but	an	exception,	this	can	lead	to	significant	unnecessary	overhead.	Furthermore,	
a	fixed	number	of	partitions	can	also	become	a	source	of	imbalance:	since	each	partition	is	assigned	to	a	
single	consumer,	it	can	happen	that	one	partition	accumulates	or	releases	records	faster	than	the	other	
partitions	if	it	is	assigned	to	a	consumer	that	is	slower	or	faster	than	the	other	consumers.	

	

	

For	 instance,	 in	 Kafka,	 a	 stream	 is	 created	
with	 a	 fixed	 number	 of	 partitions	 that	 are	
managed	by	 Kafka’s	 brokers,	 as	 depicted	 in	
Figure	2.	Each	partition	is	represented	by	an	
index	 file	 for	offset	positioning	and	a	 set	of	
segment	 files,	 initially	 one,	 for	 holding	
stream	 records.	 Kafka	 leverages	 the	
operating	 system	 cache	 to	 serve	 partition’s	
data	to	its	clients.	Due	to	this	design	it	is	not	
advised	 to	 collocate	 streaming	 applications	
on	 the	 same	 Kafka	 nodes,	 which	 does	 not	
allow	to	leverage	data	locality	optimizations.	

Offset-based	record	access	

The	 brokers	 assign	 to	 each	 record	 of	 a	
partition	 a	 monotonically	 increasing	
identifier	 called	 the	 partition	 offset,	 al-
lowing	 applications	 to	 get	 random	 access	
within	partitions	by	specifying	the	offset.	The	rationale	of	providing	random	access	(despite	the	fact	that	
streaming	applications	normally	access	the	records	in	sequential	order)	is	due	to	the	fact	that	it	enables	
failure	recovery.	Specifically,	a	consumer	that	failed	can	go	back	to	a	previous	checkpoint	and	replay	the	
records	 starting	 from	 the	 last	 offset	 at	 which	 its	 state	 was	 checkpointed.	 Furthermore,	 using	 offsets	
when	accessing	records	enables	the	broker	to	remain	stateless	with	respect	to	the	consumers.	However,	
support	for	efficient	random	access	is	not	free:	assigning	an	offset	to	each	record	at	such	fine	granularity	
degrades	 the	 access	 performance	 and	 occupies	 more	 memory.	 Furthermore,	 since	 the	 records	 are	
requested	in	batches,	each	batch	will	be	larger	due	to	the	offsets,	which	generates	additional	network	
overhead.	

3.3 Design	principles	for	stream	ingestion	
In	order	to	address	the	issues	detailed	in	the	previous	section,	we	introduce	a	set	of	design	principles	for	
efficient	stream	ingestion	and	scalable	processing.	

Fig. 2. Kafka’s architecture (illustrated with 3 partitions, 3 replicas
and 5 brokers.). Producers and consumers query Zookeeper for
partition metadata (i.e., on which broker a stream partition leader is
stored). Producers append to the partition’s leader (e.g., broker 1 is
assigned partition 1 leader), while exclusively one consumer pulls
records from it starting at a given offset, initially 0. Records are
appended to the last segment of a partition with an offset being
associated to each record. Each partition has 2 other copies (i.e.,
partition’s followers) assigned to other brokers that are responsible to
pull data from the partition’s leader in order to remain in sync.

	 			 	 							

Page	13	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

a) Dynamic	 partitioning	 using	 semantic	 grouping	 and	 sub-partitions:	 In	 a	 streaming	 application,	
users	need	to	be	able	to	control	partitioning	at	the	highest	level	in	order	to	de-fine	how	records	can	be	
grouped	together	in	a	meaningful	way.	Therefore,	it	is	not	possible	to	eliminate	partitioning	altogether	
(e.g.,	by	assigning	individual	records	directly	to	consumers).	However,	we	argue	that	users	should	not	be	
concerned	 about	 performance	 issues	 when	 designing	 the	 partitioning	 strategy,	 but	 rather	 by	 the	
semantics	of	the	grouping.	Since	state-of-art	approaches	assign	a	single	producer	and	consumer	to	each	
partition,	 the	 users	 need	 to	 be	 aware	 of	 both	 semantics	 and	 performance	 issues	 when	 using	 static	
partitioning.	 Therefore,	 we	 propose	 a	 dynamic	 partitioning	 scheme	 where	 users	 fix	 the	 high	 level	
partitioning	 criteria	 from	 the	 semantic	perspective,	while	 the	 ingestion	 system	 is	 responsible	 to	make	
each	parti-tion	elastic	by	allowing	multiple	producers	and	consumers	to	access	it	simultaneously.	To	this	
end,	we	propose	to	split	each	partition	into	sub-partitions,	each	of	which	is	independently	managed	and	
attached	to	a	potentially	different	producer	and	consumer.	

b) Lightweight	offset	indexing	optimized	for	sequential	record	access:	Since	random	access	to	the	
records	 is	 not	 the	norm	but	 an	exception,	we	argue	 that	 ingestion	 systems	 should	primarily	 optimize	
sequential	 access	 to	 records	 at	 the	expense	of	 random	access.	 To	 this	 end,	we	propose	a	 lightweight	
offset	 indexing	 that	 assigns	 offsets	 at	 coarse	 granularity	 at	 sub-partition	 level	 rather	 than	 fine	
granularity	 at	 record	 level.	 Additionally,	 this	 offset	 keeps	 track	 (on	 client	 side)	 of	 the	 last	 accessed	
record’s	 physical	 position	 within	 the	 sub-partition,	 which	 enables	 the	 consumer	 to	 ask	 for	 the	 next	
records.	Moreover,	random	access	can	be	easily	achieved	when	needed	by	finding	the	sub-partition	that	
covers	the	offset	of	the	record	and	then	seeking	into	the	sub-partition	forward	or	backward	as	needed.	

3.4 KerA:	overview	
In	 this	 section	 we	 introduce	 KerA,	 a	 prototype	 stream	 ingestion	 system	 that	 illustrates	 the	 design	
principles	introduced	in	the	previous	section.	

Partitioning	model	

KerA	 implements	 dynamic	 partitioning	 based	 on	 the	 concept	 of	 streamlet,	 which	 corresponds	 to	 the	
semantic	high-level	partition	that	groups	records	together.	Each	stream	is	therefore	composed	of	a	fixed	
number	of	streamlets.	In	turn,	each	streamlet	is	split	into	groups,	which	correspond	to	the	sub-partitions	
assigned	to	a	single	producer	and	consumer.	A	streamlet	can	have	an	arbitrary	number	of	groups,	each	
of	which	can	grow	up	to	a	maximum	predefined	size.	To	facilitate	the	management	of	groups	and	offsets	
in	 an	 efficient	 fashion,	 each	 group	 is	 further	 split	 into	 fixed-sized	 segments.	 The	maximum	 size	 of	 a	
group	is	a	multiple	of	segment	size	P	1.	To	control	the	level	of	parallelism	allowed	on	each	broker,	only	Q	
1	groups	can	be	active	at	a	given	moment.	Elasticity	is	achieved	by	assigning	an	initial	number	of	brokers	

N	 1	 to	 hold	 the	 streamlets	M,	M	N.	 As	more	 producers	 and	 consumers	 access	 the	 streamlets,	more	
brokers	can	be	added	up	to	M.	

In	 order	 to	 ensure	 ordering	 semantics,	 each	 streamlet	 dynamically	 creates	 groups	 and	 segments	 that	
have	 unique,	 monotonically	 increasing	 identifiers.	 Brokers	 expose	 this	 information	 through	 RPCs	 to	

	 			 	 							

Page	14	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

consumers	 that	 create	 an	 application	 offset	 defined	 as	 [streamId,	 streamletId,	 groupId,	 segmentId,	
position]	 based	 on	which	 they	 issue	 RPCs	 to	 pull	 data.	 The	 position	 is	 the	 physical	 offset	 at	 which	 a	
record	can	be	found	in	a	segment.	The	consumer	initializes	it	to	0	(broker	understands	to	iterate	to	first	
record	available	 in	 that	 segment)	and	 the	broker	 responds	with	 the	 last	 record	position	 for	each	new	
request,	so	the	consumer	can	update	its	latest	offset	to	start	a	future	request	with.	Using	this	dynamic	
approach	(as	opposed	to	the	static	approach	used	by	explicit	offsets	per	partition,	clients	have	to	query	
brokers	to	discover	groups),	we	implement	 lightweight	offset	 indexing	optimized	for	sequential	record	
access.	

Stream	records	are	appended	in	order	to	the	segments	of	a	group,	without	associating	an	offset,	which	
reduces	 the	 storage	 and	 processing	 overhead.	 Each	 consumer	 exclusively	 processes	 one	 group	 of	
segments.	Once	the	segments	of	a	group	are	filled	(the	number	of	segments	per	group	is	configurable),	
a	new	one	is	created	and	the	old	group	is	closed	(i.e.,	no	longer	enables	appends).	A	group	can	also	be	
closed	after	a	timeout	if	it	was	not	appended	in	this	time.	

Favoring	parallelism:	consumer	and	producer	protocols	

Producers	only	need	to	know	about	streamlets	when	inter-acting	with	KerA.	The	input	batch	 is	always	
ingested	 to	 the	ac-tive	group	 computed	deterministically	on	brokers	based	on	 the	producer	 identifier	
and	parameter	Q	of	given	streamlet	 (each	producer	request	has	a	header	with	the	producer	 identifier	
with	 each	 batch	 tagged	with	 the	 streamlet	 id).	 Producers	 writing	 to	 the	 same	 streamlet	 synchronize	
using	a	lock	on	the	streamlet	in	order	to	obtain	the	active	group	corresponding	to	the	Qth	entry	based	
on	 their	 producer	 identifier.	 The	 lock	 is	 then	 released	 and	 a	 second-level	 lock	 is	 used	 to	 synchronize	
producers	accessing	the	same	active	group.	Thus,	two	producers	appending	to	the	same	streamlet,	but	
different	groups,	may	proceed	 in	parallel	 for	data	 ingestion.	 In	contrast,	 in	Kafka	producers	writing	 to	
the	same	partition	block	each	other,	with	no	opportunity	for	parallelism.	

Consumers	issue	RPCs	to	brokers	in	order	to	first	discover	streamlets’	new	groups	and	their	segments.	
Only	 after	 the	 application	 offset	 is	 defined,	 consumers	 can	 issue	 RPCs	 to	 pull	 data	 from	 a	 group’s	
segments.	Initially	each	consumer	is	associated	(non-exclusively)	to	one	or	many	streamlets	from	which	
to	pull	data	from.	Consumers	process	groups	of	a	streamlet	in	the	order	of	their	identifiers,	pulling	data	
from	segments	also	in	the	order	of	their	respective	identifiers.	Brokers	maintain	for	each	streamlet	the	
last	group	given	to	consumers	identified	by	their	consumer	group	id	(i.e.,	each	consumer	request	header	
contains	a	unique	application	id).	A	group	is	configured	with	a	fixed	number	of	segments	to	allow	fine-
grained	 consumption	 with	many	 consumers	 per	 streamlet	 in	 order	 to	 better	 load	 balance	 groups	 to	
consumers.	As	 such,	 each	 consumer	has	 a	 fair	 access	 chance	 since	 the	 group	 is	 limited	 in	 size	by	 the	
segment	 size	 and	 the	 number	 of	 segments.	 This	 approach	 also	 favors	 parallelism.	 Indeed,	 in	 KerA	 a	
consumer	pulls	data	 from	one	group	of	a	streamlet	exclusively,	which	means	that	multiple	consumers	
can	read	in	parallel	from	different	groups	of	the	same	streamlet.	 In	Kafka,	a	consumer	pulls	data	from	
one	partition	exclusively.	

	 	

	 			 	 							

Page	15	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

Architecture	and	implementation	

KerA’s	architecture	is	similar	to	Kafka’s	(Figure	3):	a	single	layer	of	brokers	(nodes)	serve	producers	and	
consumers.	 However,	 in	 KerA	 brokers	 are	 used	 to	 discover	 stream	 partitions.	 Kera	 builds	 atop	
RAMCloud	[RC15]	to	leverage	its	network	abstraction	that	enables	the	use	of	other	network	transports	
(e.g.,	 UDP,	 DPDK,	 Infiniband),	
whereas	 Kafka	 only	 supports	 TCP.	
Moreover,	it	allows	KerA	to	benefit	
from	 a	 set	 of	 design	 choices	 like	
polling	 and	 request	 dispatching	
[RC17]	 that	 help	 boost	
performance	 (kernel	 bypass	 and	
zero-copy	 networking	 are	 possible	
with	DPDK	and	Infiniband).	

Each	 broker	 has	 an	 ingestion	
component	 offering	 pub/sub	
interfaces	 to	 stream	clients	 and	an	
optional	 backup	 component	 that	
can	 store	 stream	 replicas.	 This	 allows	 for	 separation	 of	 nodes	 serving	 clients	 from	 nodes	 serving	 as	
backups.	Another	important	difference	compared	to	Kafka	is	that	brokers	directly	manage	stream	data	
instead	 of	 leveraging	 the	 kernel	 virtual	 cache.	 KerA’s	 segments	 are	 buffers	 of	 data	 controlled	 by	 the	
stream	 storage.	 Since	 each	 segment	 contains	 the	 stream,	 streamlet,	 group]	 metadata,	 a	 streamlet’s	
groups	can	be	durably	stored	independently	on	multiple	disks,	while	in	Kafka	a	partition’s	segments	are	
stored	on	a	single	disk.	

To	support	durability	and	replication,	and	implement	fast	crash	recovery	techniques,	it	is	possible	to	rely	
on	RAM-Cloud	[RC11],	by	leveraging	the	aggregated	disk	bandwidth	in	order	to	recover	the	data	of	a	lost	
node	 in	 seconds.	 KerA’s	 fine-grained	 partitioning	 model	 favors	 this	 recovery	 technique.	 However	 it	
cannot	 be	 used	 as	 such:	 producers	 should	 continuously	 append	 records	 and	 not	 suffer	 from	 broker	
crashes,	 while	 consumers	 should	 not	 have	 to	 wait	 for	 all	 data	 to	 be	 recovered	 (thus	 incurring	 high	
latencies).	 Instead,	recovery	can	be	achieved	by	 leveraging	consumers’	application	offsets.	We	plan	to	
enable	such	support	as	future	work.	

3.5 Experimental	evaluation	
We	evaluate	KerA	compared	to	Kafka	using	a	set	of	synthetic	benchmarks	to	assess	how	partitioning	and	
(application	defined)	offset	based	access	models	impact	performance.	

Figure	3.	Kera’s	architecture	(3	steamlets,	5	brokers).	

	 			 	 							

Page	16	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

A.	Setup	and	parameter	configuration	

We	ran	all	our	experiments	on	Grid5000	Grisou	cluster	 [G5K].	Each	node	has	16	cores	and	128	GB	of	
memory.	In	each	experiment	the	source	thread	of	each	producer	creates	50	million	non-keyed	records	
of	100	bytes,	and	partitions	them	round-robin	in	batches	of	configurable	size.	The	source	waits	no	more	
than	1ms	(parameter	named	linger.ms	in	Kafka)	for	a	batch	to	be	filled,	after	this	timeout	the	batch	is	
sent	 to	 the	broker.	Another	producer	 thread	groups	batches	 in	 requests	and	sends	 them	to	 the	node	
responsible	of	the	request’s	partitions	(multi	TCP	synchronous	requests).	Similarly,	each	consumer	pulls	
batches	of	records	with	one	thread	and	simply	iterates	over	records	on	another	thread.	

In	 the	 client’s	 main	 thread	 we	 measure	 ingestion	 and	 pro-cessing	 throughput	 and	 log	 it	 after	 each	
second.	 Producers	 and	 consumers	 run	 on	 different	 nodes.	We	plot	 average	 ingestion	 throughput	 per	
client	(producers	are	represented	with	KeraProd	and	KafkaProd,	respectively	consumers	with	KeraCons	
and	 KafkaCons),	 with	 50	 and	 95	 percentiles	 computed	 over	 all	 clients	 measurements	 taken	 when	
concurrently	 running	 all	 producers	 and	 consumers	 (without	 considering	 the	 first	 and	 last	 ten	 seconds	
measurements	of	each	client).	

Each	broker	is	configured	with	16	network	threads	that	corresponds	to	the	number	of	cores	of	a	node	
and	holds	one	copy	of	the	streamlet’s	groups	(we	plan	to	study	pull-based	versus	push-based	replication	
impact	in	future	work).	In	each	experiment	we	run	an	equal	number	of	producers	and	consumers.	The	
number	of	partitions/streamlets	is	configured	to	be	a	multiple	of	the	number	of	clients,	at	least	one	for	
each	client.	Unless	specified,	we	configure	in	KerA	the	number	of	active	groups	to	1	and	the	number	of	
segments	to	16.	A	request	 is	characterized	by	 its	size	(i.e.,	request.size,	 in	bytes)	and	contains	a	set	of	
batches,	one	for	each	partition,	each	batch	having	a	batch.size	in	bytes.	We	use	Kafka	0.10.2.1	since	it	
has	a	similar	data	model	with	KerA	(newest	release	introduces	batch	entries	for	exactly	once	processing,	
a	 feature	 that	could	be	efficiently	enabled	also	 in	KerA	 [Lee15]).	A	Kafka	segment	 is	512	MB,	while	 in	
KerA	 it	 is	 8MB.	 This	 means	 that	 rolling	 to	 a	 new	 segment	 happens	 more	 often	 and	 may	 impact	
performance	(since	KerA’s	clients	need	to	discover	new	segments	before	pulling	data	from	them).	

B.	Results	
While	 Kafka	 provides	 a	 static	 offset-based	 access	 by	 maintaining	 and	 indexing	 record	 offsets,	 KerA	
proposes	 dynamic	 access	 through	 application	 defined	 offsets	 that	 leverage	 streamlet-group-segment	
metadata	 (thus,	 avoiding	 the	 over-head	 of	 offset	 indexing	 on	 brokers).	 In	 order	 to	 understand	 the	
application	offset	overhead	in	Kafka	and	KerA,	we	evaluate	different	scenarios,	as	follows.	

	 			 	 							

Page	17	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

									 	

Impact	of	the	batch/request	size.	By	 increasing	the	batch	size	we	observe	smaller	gains	 in	Kafka	than	
KerA	(Figure	4).	KerA	provides	up	to	5x	higher	throughput	when	increasing	the	batch	size	from	1KB	to	
4KB,	after	which	throughput	is	limited	by	that	of	the	producer’s	source.	For	each	producer	request,	be-
fore	appending	a	batch	to	a	partition,	Kafka	iterates	at	runtime	over	batch’s	records	in	order	to	update	
their	offset,	while	Kera	simply	appends	the	batch	to	the	group’s	segment.	To	build	the	application	offset,	
KerA’s	consumers	query	brokers	(issuing	RPCs	that	compete	with	writes	and	reads)	in	order	to	discover	
new	groups	and	their	segments.	This	could	be	optimized	by	implementing	a	smarter	read	request	that	
discovers	new	groups	or	segments	automatically,	reducing	the	number	of	RPCs.	

Adding	clients	(vertical	scalability).	Having	more	concur-rent	clients	(producers	and	consumers)	means	
possibly	reduced	throughput	due	to	more	competition	on	partitions	and	less	worker	threads	available	to	
process	 the	 requests.	 As	 presented	 in	 Figure	 5,	 when	 running	 up	 to	 64	 clients	 on	 4	 brokers	 (full	
parallelism),	 KerA	 is	 more	 efficient	 in	 front	 of	 higher	 number	 of	 clients	 due	 to	 its	 more	 efficient	
application	offset	indexing.	

Adding	 nodes	 (horizontal	 scalability).	 Since	 clients	 can	 leverage	 multi-TCP,	 distributing	 partitions	 on	
more	nodes	helps	increasing	throughput.	As	presented	in	Figure	6,	even	when	Kafka	uses	4	times	more	
nodes,	it	only	delivers	half	of	the	performance	of	KerA.	Current	KerA	implementation	prepares	a	set	of	
requests	 from	 available	 batches	 (those	 that	 are	 filled	 or	 those	 with	 the	 timeout	 expired)	 and	 then	
submits	 them	to	brokers,	polling	 them	for	answers.	Only	after	all	 requests	are	executed,	a	new	set	of	
requests	 is	 built.	 This	 implementation	 can	 be	 further	 optimized	 and	 the	 network	 client	 can	 be	
asynchronously	decoupled,	like	in	Kafka,	in	order	to	allow	for	submissions	of	new	requests	when	older	
ones	are	processed.	

	 			 	 							

Page	18	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Increasing	the	number	of	partitions/streamlets.	Finally,	we	seek	to	assess	the	impact	of	increasing	the	
number	of	partitions	on	the	ingestion	throughput.	When	the	number	of	partitions	is	increased	we	also	
reduce	 the	 batch.size	 while	 keeping	 the	 request.size	 fixed	 in	 order	 to	maintain	 the	 target	maximum	
latency	an	application	needs.	We	configure	KerA	similarly	to	Kafka:	the	number	of	active	groups	is	1	so	
the	number	of	 streamlets	gives	a	number	of	active	groups	equal	 to	 the	number	of	partitions	 in	Kafka	
(one	active	group	for	each	streamlet	to	pull	data	from	in	each	consumer	request).	We	observe	in	Figure	
7	 that	 when	 increasing	 the	 number	 of	 partitions	 the	 average	 throughput	 per	 client	 decreases.	 We	
suspect	Kafka’s	drop	 in	performance	(20x	 less	than	KerA	for	1024	partitions)	 is	due	to	 its	offset-based	
implementation,	having	to	manage	one	index	file	for	each	partition.	

With	 KerA	 one	 can	 leverage	 the	 streamlet-group	 abstractions	 in	 order	 to	 provide	 applications	 an	
unlimited	 number	 of	 partitions	 (fixed	 size	 groups	 of	 segments).	 To	 show	 this	 benefit,	 we	 run	 an	
additional	 experiment	 with	 KerA	 configured	 with	 64	 streamlets	 and	 16	 active	 groups.	 The	 achieved	
throughput	is	almost	850K	records	per	second	per	client	providing	consumers	1024	active	groups	(fixed-
size	partitions)	compared	to	less	than	50K	records	per	second	with	Kafka	providing	the	same	number	of	
partitions.	The	streamlet	configuration	allows	the	user	to	reason	about	the	maximum	number	of	nodes	
on	which	 to	 partition	 a	 stream,	 each	 streamlet	 providing	 an	 unbounded	 number	 of	 fixed-size	 groups	
(partitions)	 to	 process.	 KerA	 provides	 higher	 parallelism	 to	 producers	 resulting	 in	 higher	
ingestion/processing	client	throughput	than	Kafka.	

3.6 Summary	
We	introduced	KerA,	a	novel	data	ingestion	system	for	Big	Data	stream	processing	specifically	designed	
to	 deliver	 high	 throughput,	 low	 latency	 and	 to	 elastically	 scale	 to	 a	 large	 number	 of	 producers	 and	
consumers.	 The	 core	 ideas	 proposed	 by	 KerA	 revolve	 around:	 (1)	 dynamic	 partitioning	 based	 on	
semantic	 grouping	 and	 sub-partitioning,	 which	 enables	 more	 flexible	 and	 elastic	 management	 of	
partitions;	 (2)	 lightweight	 offset	 indexing	 optimized	 for	 sequential	 record	 access	 using	 streamlet	
metadata	 exposed	 by	 the	 broker.	 We	 illustrate	 how	 KerA	 implements	 these	 core	 ideas	 through	 a	
research	 proto-type.	 Based	 on	 extensive	 experimental	 evaluations,	 we	 show	 that	 KerA	 outperforms	
Kafka	 up	 to	 4x	 for	 ingestion	 throughput	 and	 up	 to	 5x	 for	 the	 overall	 stream	 processing	 throughput.	
Furthermore,	 we	 have	 shown	 KerA	 is	 capable	 of	 delivering	 data	 fast	 enough	 to	 saturate	 a	 Big	 Data	
stream	 processing	 engine	 acting	 as	 the	 consumer.	 Encouraged	 by	 these	 initial	 results,	 we	 plan	 to	
integrate	 KerA	 with	 streaming	 engines	 and	 to	 explore	 in	 future	 work	 several	 topics:	 data	 locality	
optimizations	 through	 shared	 buffers,	 durability	 as	 well	 as	 state	management	 features	 for	 streaming	
applications.	

	 			 	 							

Page	19	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

4 Tailwind:	 Fast	 and	 Atomic	 RDMA-based	 Replication	 in	 Support	 of	
In-Memory	Big	Data	Analytics	

4.1 Context	and	problem	
In-memory	key-value	stores	are	an	essential	building	block	for	large-scale	Big	Data	analytics	applications	
[Dynamo,Nis13].	 Recent	 research	 has	 led	 to	 in-memory	 key-value	 stores	 that	 can	 perform	millions	 of	
operations	 per	 second	 per	 machine	 with	 a	 few	 microseconds	 remote	 access	 times.	 Harvesting	 CPU	
power	 and	 eliminating	 conventional	 network	 overheads	 has	 been	 key	 to	 these	 gains.	 How-ever,	 like	
many	other	systems,	they	must	replicate	data	in	order	to	survive	failures.	

As	 the	 core	 frequency	 scaling	 and	multi-core	 architecture	 scaling	 are	 both	 slowing	 down,	 it	 becomes	
critical	 to	 reduce	 replication	 overheads	 to	 keep-up	 with	 shift-ing	 application	 workloads	 in	 key-value	
stores	 [Li17].	We	 show	 that	 replication	 can	 consume	up	 to	 80%	of	 the	CPU	 cycles	 for	write-intensive	
workloads,	 in	 strongly-consistent	 in-memory	 key-value	 stores.	 Techniques	 like	 remote-direct	memory	
access	(RDMA)	are	promising	to	improve	overall	CPU	efficiency	of	replication	and	keep	predictable	tail	
latencies.	

Existing	RDMA-based	approaches	use	message-passing	interfaces:	a	sender	remotely	places	a	message	
into	a	 receiver’s	DRAM;	a	 receiver	must	actively	poll	and	handle	new	RDMA	messages.	This	approach	
guar-antees	 the	 atomicity	 of	 RDMA	 transfers,	 since	 only	 fully	 received	 messages	 are	 applied	 by	 the	
receiver	 [Farm,Kal14,Su17].	 However,	 this	 approach	 defeats	 RDMA	 efficiency	 goals	 since	 it	 forces	
receivers	to	use	their	CPU	to	handle	in-coming	RDMA	messages	and	it	incurs	additional	mem-ory	copies.	

	

The	main	challenge	of	efficiently	using	RDMA	for	replication	is	that	failures	could	result	 in	partially	ap-
plied	writes.	The	 reason	 is	 that	 receivers	are	not	aware	of	data	being	written	 to	 their	DRAM.	Leaving	
receivers	idle	is	challenging	because	there	is	no	protocol	to	guarantee	data	consistency	in	the	event	of	
failures.	

A	 second	 key	 limitation	with	 RDMA	 is	 its	 low	 scal-ability.	 This	 limitation	 comes	 from	 the	 connection-
oriented	nature	of	RDMA	transfers.	Senders	and	re-ceivers	have	to	setup	queue	pairs	(QP)	to	perform	
RDMA.	 Lots	 of	 recent	 work	 has	 observed	 the	 high	 cost	 of	 NIC	 connection	 cache	 misses	
[Farm,Kal16,Tsa17].	Scalability	is	limited	as	it	typically	depends	on	the	cluster	size.	

To	 address	 the	 above	 challenges,	we	 developed	 Tailwind,	 a	 zero-copy	 primary-backup	 log	 replication	
proto-col	 that	 completely	 bypasses	 CPUs	 on	 all	 target	 backup	 servers.	 In	 Tailwind,	 log	 records	 are	
transferred	directly	 from	 the	 source	 server’s	DRAM	to	 I/O	buffers	at	 tar-get	 servers	via	RDMA	writes.	
Backup	 servers	 are	 com-pletely	 passive	 during	 replication,	 saving	 their	 CPUs	 for	 other	 purposes;	 they	
flush	 these	 buffers	 to	 solid-state	 drives	 (SSD)	 periodically	 when	 the	 source	 triggers	 it	 via	 remote	
procedure	 call	 (RPC)	 or	when	power	 is	 inter-rupted.	 Even	 though	backups	 are	 idle	 during	 replication,	

	 			 	 							

Page	20	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Tailwind	 is	 strongly	 consistent:	 it	 has	 a	 protocol	 that	 allows	 backups	 to	 detect	 incomplete	 RDMA	
transfers.	

Tailwind	uses	RDMA	write	operations	for	all	data	movement,	but	all	control	operations	such	as	buffer	al-
location	 and	 setup,	 server	 failure	 notifications,	 buffer	 flushing	 and	 freeing	 are	 all	 handled	 through	
conventional	RPCs.	 This	 simplifies	 such	 complex	operations	without	 slowing	down	data	movement.	 In	
our	 implementation,	 RPCs	 only	 account	 for	 10	 5	 of	 the	 replication	 requests.	 This	 also	makes	 Tailwind	
easier	to	use	in	systems	that	use	log	replication	over	distributed	blocks	even	if	they		were	not	designed	
to	exploit	RDMA.		

Since	 Tailwind	 needs	 only	 to	 maintain	 connections	 between	 a	 primary	 server	 and	 its	 backups,	 the	
number	of	connections	scales	with	the	size	of	a	replica	group,	not	with	the	cluster	size,	making	Tailwind	
a	scalable	approach.	

We	implemented	and	evaluated	Tailwind	on	RAM-	Cloud,	a	scale-out	in-memory	key-value	store	that	ex-	
ploits	fast	kernel-bypass	networking.	Tailwind	is	suited	to	RAMCloud’s	focus	on	strong	consistency	and	
low	 latency.	 Tailwind	 significantly	 improves	 RAMCloud’s	 throughput	 since	 each	 PUT	 operation	 in	 the	
cluster	 re-	 sults	 in	 three	 remote	 replication	 operation	 that	 would	 oth-	 erwise	 consume	 server	 CPU	
resources.	

Tailwind	improves	RAMCloud’s	throughput	by	1.7×	on	the	YCSB	benchmark,	and	it	reduces	durable	PUT	
median	latency	from	32	μs	to	16	μs	and	99th	percentile	latency	from	78	μs	to	28	μs.	Theses	results	stem	
from	 the	 fact	 that	 Tailwind	 significantly	 reduces	 the	 CPU	 cycles	 used	 by	 the	 replication	 operations:	
Tailwind	only	needs	1/3	of	the	cores	RAMCloud	uses	to	achieve	the	same	throughput.	

This	work	makes	four	key	contributions.	

•	it	analyzes	and	quantifies	CPU	related	limitations	in	modern	in-memory	key-value	stores;	

•	it	presents	Tailwind’s	design,	it	describes	its	imple-mentation	in	the	RAMCloud	distributed	in-memory	
key-value	store,	and	it	evaluates	its	impact	on	RAM-Cloud’s	normal-case	and	recovery	performance;	

•	 to	 our	 knowledge,	 Tailwind	 is	 the	 first	 log	 repli-cation	 protocol	 that	 eliminates	 all	 superfluous	 data	
copying	 between	 the	 primary	 replica	 and	 its	 back-ups,	 and	 it	 is	 the	 first	 log	 replication	 protocol	 that	
leaves	servers	CPU	idle	while	serving	as	replication	targets;	this	allows	servers	to	focus	more	resources	
on	normal-case	request	processing;	

•	Tailwind	separates	the	replication	data	path	and	control	path	and	optimizes	them	individually;	it	uses	
RDMA	 for	 heavy	 transfer,	 but	 it	 retains	 the	 simplicity	 of	 RPC	 for	 rare	 operations	 that	must	 deal	with	
complex	semantics	like	failure	handling	and	resource	exhaustion.	

4.2 The	Promise	of	RDMA	and	Challenges	
Replication	and	 redundancy	are	 fundamental	 to	 fault	 tolerance,	but	at	 the	same	time	 they	are	costly.	
Primary-backup	replication	(PBR)	 is	popular	 in	 fault-tolerant	storage	systems	 like	 file	systems	and	key-
value	stores,	since	it	tolerates	f	stop-failures	with	f	+	1	replicas.	Note	that,	we	refer	to	a	primary	replica	

	 			 	 							

Page	21	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

server	 as	 primary,	 and	 secondary	 replica	 server	 as	 secondary	 or	 backup.	 In	 some	 systems,	 backup	
servers	don’t	process	user-facing	 requests,	but	 in	many	systems	each	node	acts	as	both	a	primary	 for	
some	data	items	and	as	a	backup	for	other	data	items.	In	some	systems	this	 is	 implicit:	for	example,	a	
key-value	store	may	store	its	state	on	HDFS	[Hdfs]	and	a	single	physical	machine	might	run	both	a	key-
value	store	frontend	and	an	HDFS	chunkserver.	

Replication	is	expensive	for	three	reasons.	First,	it	is	inherently	redundant	and,	hence,	brings	overhead:	
the	 act	 of	 replication	 itself	 requires	 moving	 data	 over	 the	 network.	 Second,	 replication	 in	 strongly	
consistent	 systems	 is	 usually	
synchronous,	 so	 a	 primary	 must	
stall	 while	 holding	 resources	
while	 waiting	 for	
acknowledgements	from	backups	
(often	 spin-ning	 a	 CPU	 core	 in	
low-latency	 stores).	 Third,	 in	
systems,	 where	 servers	 (either	
explicitly	or	implicitly)	serve	both	
client-facing	 requests	 and	
replication	 operations,	 those	
operations	contend.		

Figure	 8	 shows	 this	 in	 more	
detail.	 Low-latency,	 high-

throughput	 stores	 use	 kernel-
bypass	to	directly	poll	NIC	control	
rings	(with	a	dispatch	core)	to	avoid	kernel	code	paths	and	interrupt	latency	and	throughput	costs.	Even	
so,	a	CPU	on	a	primary	node	processing	an	update	operation	must	receive	the	request,	hand	the	request	
off	 to	a	core	 (worker	core)	 to	be	processed,	send	remote	messages,	and	then	wait	 for	multiple	nodes	
acting	 as	 backup	 to	 process	 these	 requests.	 Batching	 can	 improve	 the	 number	 of	 backup	 request	
messages	each	server	must	receive,	but	at	the	cost	of	increased	latency.	Inherently,	though,	replication	
can	double,	triple,	or	quadruple	the	number	of	messages	and	the	amount	of	data	generated	by	client-
issued	write	requests.	It	also	causes	expensive	stalls	at	the	primary	while	it	waits	for	responses.	In	these	
systems,	responses	take	a	few	microseconds	which	is	too	short	a	time	for	the	primary	to	context	switch	
to	another	thread,	yet	its	long	enough	that	the	worker	core	spends	a	large	fraction	of	its	time	waiting.	

RDMA	Opportunities	
One-sided	 RDMA	 operations	 are	 attractive	 for	 replication;	 replication	 inherently	 requires	 expensive,	
redundant	data	movement.	Backups	are	(mostly)	passive;	they	often	act	as	dumb	storage,	so	they	may	
not	need	CPU	involvement.	RAMCloud,	an	in-memory	low-latency	kernel-bypass-based	key-value	store,	
is	often	bottlenecked	on	CPU.	For	 read-heavy	workloads,	 the	cost	of	polling	net-work	and	dispatching	

Figure	8.	Flow	of	primary-backup	replication	

	 			 	 							

Page	22	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

requests	 to	 idle	worker	 cores	dominates.	Because	of	 that,	worker	 cores	 cannot	be	 fully	utilized.	One-
sided	 operations	 for	 replicating	 PUT	 operations	 would	 reduce	 the	 number	 of	 requests	 each	 server	
handles	in	RAMCloud,	which	would	indirectly	but	significantly	improve	read	throughput.	For	workloads	
with	a	significant	fraction	of	writes	or	where	a	large	amount	of	data	is	transferred,	write	throughput	can	
be	improved,	since	remote	CPUs	needn’t	copy	data	between	NIC	receive	buffers	and	I/O	or	non-volatile	
storage	buffers.	

Challenges	

The	key	challenge	 in	using	one-sided	RDMA	operations	 is	that	they	have	simple	semantics	which	offer	
little	control	on	the	remote	side.	This	is	by	design;	the	remote	NIC	executes	RDMA	operations	directly,	
so	they	lack	the	generality	that	a	conventional	CPU-based	RPC	handlers	would	have.	A	host	can	issue	a	
remote	read	of	a	single,	sequential	region	of	the	re-mote	processes	virtual	address	space	(the	region	to	
read	must	be	registered	first,	but	a	process	could	register	its	whole	virtual	address	space).	Or,	a	host	can	
issue	a	remote	write	of	a	sin-gle,	sequential	region	of	the	remote	processes	virtual	address	space	(again,	
the	 region	must	be	 registered	with	 the	NIC).	NICs	 support	a	 few	more	complex	operations	 (compare-
and-swap,	atomic	add),	but	these	operations	are	currently	much	slower	than	issuing	an	equiva-lent	two-
sided	 operation	 that	 is	 serviced	 by	 the	 remote	 CPU	 [Su17,	 Kal16].	 These	 simple,	 restricted	 semantics	
make	 RDMA	 operations	 efficient,	 but	 they	 also	 make	 them	 hard	 to	 use	 safely	 and	 correctly.	 Some	
existing	 systems	 use	 one-sided	 RDMA	 operations	 for	 replication	 (and	 some	 also	 even	 use	 them	 for	
normal	case	operations	[Farm]).	

However,	no	existing	primary-backup	replication	scheme	reaps	the	full	benefits	of	one-sided	operations.	
In	existing	approaches,	source	nodes	send	replication	operations	using	RDMA	writes	to	push	data	 into	
ring	buffers.	CPUs	at	backups	poll	for	these	operations	and	apply	them	to	replicas.	In	practice,	this	is	is	
effectively	emulating	two-sided	operations	[Farm].	RDMA	reads	don’t	work	well	for	replication,	because	
they	 would	 require	 backup	 CPUs	 to	 schedule	 operations	 and	 “pull”	 data,	 and	 primaries	 wouldn’t	
immediately	know	when	data	was	safely	replicated.	

Two	key,	interrelated	issues	make	it	hard	to	use	RDMA	writes	for	replication	that	fully	avoids	the	remote	
CPUs	at	backups.	 First,	 a	primary	 can	 crash	when	 replicating	data	 to	a	backup.	Because	RDMA	writes	
(inherently)	don’t	buffer	all	of	 the	data	 to	be	written	 to	 remote	memory,	 it	 is	possible	 that	an	RDMA	
write	could	be	partially	applied	when	the	pri-mary	crashes.	If	a	primary	crashes	while	updating	state	on	
the	backup,	 the	backup’s	 replica	wouldn’t	 be	 in	 the	 “before”	or	 “after”	 state,	which	 could	 result	 in	 a	
corrupted	replica.	Worse,	since	the	primary	was	likely	mutating	all	replicas	concurrently,	it	is	possible	for	
all	 replicas	 to	be	 corrupted.	 Interestingly,	 backup	 crashes	during	RDMA	writes	don’t	 create	new	chal-
lenges	for	replication,	since	protocols	must	deal	with	that	case	with	conventional	two-sided	operations	
too.	 Well-known	 techniques	 like	 log-structured	 backups	 or	 shadow	 paging	 can	 be	 used	 to	 prevent	
update-in-place	 and	 loss	 of	 atomicity.	 Traditional	 log	 implementations	 enforce	 a	 total	 ordering	 of	 log	
entries.	 In	 database	 systems,	 for	 instance,	 the	 order	 is	 used	 to	 recreate	 a	 consistent	 state	 during	
recovery.	

	 			 	 							

Page	23	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Unfortunately,	 a	 second	 key	 issue	 with	 RDMA	 operations	makes	 this	 hard:	 each	 opera-tion	 can	 only	
affect	 a	 single,	 contiguous	 region	of	 remote	memory.	 To	be	efficient,	one-sided	writes	must	 replicate	
data	 in	 its	 final,	 stable	 form,	otherwise	backup	CPU	must	be	 involved,	which	defeats	 the	purpose.	For	
stable	storage,	this	generally	requires	some	metadata.	For	example,	when	a	backup	uses	data	found	in	
memory	or	storage	it	must	know	which	por-tions	of	memory	contain	valid	objects,	and	it	must	be	able	
to	 verify	 that	 the	 objects	 and	 the	markers	 that	 delineate	 them	 haven’t	 been	 corrupted.	 As	 a	 result,	
backups	 need	 some	 meta-data	 about	 the	 objects	 that	 they	 host	 in	 addition	 to	 the	 data	 items	
themselves.	However,	RDMA	writes	make	this	hard.	Metadata	must	inherently	be	intermixed	with	data	
objects,	 since	 RDMA	writes	 are	 contiguous.	 Otherwise,	 multiple	 round	 trips	 would	 be	 needed,	 again	
defeating	the	efficiency	gains.	

4.3 Tailwind	
Tailwind	 is	 a	 strongly-consistent	 RDMA-based	 replication	 protocol.	 It	 was	 designed	 to	 meet	 four	
requirements:	

Zero-copy,	 Zero-CPU	 on	 Backups	 for	 Data	 Path.	 In	 order	 to	 relieve	 backups	 CPUs	 from	 processing	
replication	requests,	Tailwind	relies	on	one-sided	RDMA	writes	for	all	data	movement.	In	addition,	it	 is	
zero-copy	at	primary	and	secondary	replicas;	the	sender	uses	kernel-bypass	and	scatter/gather	DMA	for	
data	 transfer;	on	 the	backup	side,	data	 is	directly	placed	to	 its	 final	 storage	 location	via	DMA	transfer	
without	CPU	involvement.	

Strong	Consistency.	For	every	object	write	Tailwind	synchronously	waits	for	its	replication	on	all	backups	
before	 notifying	 the	 client.	 Although	 RDMA	writes	 are	 one-sided,	 reliable-connected	 QPs	 generate	 a	
work	completion	to	notify	the	sender	once	a	message	has	been	correctly	sent	and	acknowledged	by	the	
receiver	 NIC	 (i.e.	 written	 to	 remote	 memory).	 One-sided	 operation	 raise	 many	 issues,	 Tailwind	 is	
designed	to	cover	all	corner	cases	that	may	challenge	correctness.	

Overhead-free	Fault-Tolerance.	Backups	are	unaware	of	replication	as	it	happens,	which	can	be	unsafe	
in	case	of	 failures.	To	address	this,	Tailwind	appends	a	piece	of	metadata	 in	the	 log	after	every	object	
update.	Backups	use	this	metadata	to	check	integrity	and	locate	valid	objects	during	recovery.	Although	
a	few	backups	have	to	do	little	extra	work	during	crash	recovery,	that	work	has	no	impact	on	recovery	
performance.	

Preserves	 Client-facing	 RPC	 Interface.	 Tailwind	 has	 no	 requirement	 on	 the	 client	 side;	 all	 logic	 is	
implemented	 between	 primaries	 and	 backups.	 Clients	 observe	 the	 same	 consistency	 guarantees.	
However,	 for	write	operations,	 Tailwind	highly	 improves	end-to-end	 latency	and	 throughput	 from	 the	
client	perspective.	

The	Metadata	Challenge	

Metadata	is	crucial	for	backups	to	be	able	to	use	replicated	data.	For	instance,	a	backup	needs	to	know	
which	 portions	 of	 the	 log	 contain	 valid	 data.	 In	 RPC-based	 systems,	meta-data	 is	 usually	 piggybacked	
within	a	replication	request	[RC15,	Kal16].	However,	it	is	challenging	to	update	both	data	and	metadata	

	 			 	 							

Page	24	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

with	a	 single	RDMA	write	 since	 it	 can	only	affect	a	 con-tiguous	memory	 region.	 In	 this	 case,	updating	
both	 data	 and	metadata	would	 require	 send-ing	 two	messages	which	would	 nullify	 one-sided	 RDMA	
benefits.	Moreover,	this	 is	risky:	 in	case	of	failures	a	primary	may	start	updating	the	metadata	and	fail	
before	finishing,	thereby	invalidating	all	replicated	objects.	

For	 log-structured	data,	backups	need	two	pieces	of	 information:	 (1)	 the	offset	 through	which	data	 in	
the	buffer	 is	valid.	This	 is	needed	 to	guarantee	 the	atomicity	of	each	update.	An	outdated	offset	may	
lead	the	backup	to	use	old	and	inconsistent	data	during	crash	recov-ery.	(2)	A	checksum	used	to	check	
the	integrity	of	the	length	fields	of	each	log	record	during	recovery.	Checksums	are	critical	for	ensuring	
log	entry	headers	are	not	 corrupted	while	 in	buffers	or	on	 storage.	These	checksums	ensure	 iterating	
over	 the	 buffer	 is	 safe;	 that	 is,	 a	 corrupted	 length	 field	 does	 not	 “point”	 into	 the	middle	 of	 another	
object,	out	of	buffer,	or	indicate	an	early	end	to	the	buffer.	

The	protocol	assumes	that	each	object	has	a	header	next	to	 it	 [Farm,	Kafka].	 Implementation-agnostic	
information	in	headers	should	include:	(1)	the	size	of	the	object	next	to	it	to	allow	log	traversal;	(2)	an	
integrity	check	that	ensures	the	integrity	of	the	contents	of	the	log	entry.	

Tailwind	checksums	are	32-bit	CRCs	computed	over	log	entry	headers.	The	last	check-sum	in	the	buffer	
covers	 all	 previous	 headers	 in	 the	 buffer.	 For	maximum	protection,	 check-sums	 are	 end-to-end:	 they	
should	cover	the	data	while	it	is	in	transit	over	the	network	and	while	it	occupies	storage.	

To	be	able	 to	perform	atomic	updates	with	one-sided	RDMAs	 in	backups,	 the	 last	 check-sum	and	 the	
current	offset	in	the	buffer	must	be	present	and	consistent	in	the	backup	after	every	update.	A	simple	
solution	is	to	append	the	checksum	and	the	offset	before	or	after	every	object	update.	A	single	RDMA	
write	would	 suffice	 then	 for	 both	 data	 and	metadata.	 The	 checksum	must	 necessarily	 be	 sent	 to	 the	
backup.	 Interestingly,	 this	 is	 not	 the	 case	 for	 the	 offset.	 The	 nature	 of	 log-structured	 data	 and	 the	
properties	 of	 one-sided	 RDMA	make	 it	 possible,	 with	 careful	 design,	 for	 the	 backup	 to	 compute	 this	
value	at	recovery	time	without	hurting	consistency.	This	is	possible	because	RDMA	writes	are	performed	
(at	 the	 receiver	 side)	 in	 an	 increasing	 address	 order.	 In	 addition,	 reliable-connected	 QPs	 ensure	 that	
updates	are	applied	in	the	order	they	were	sent.	

	

Based	on	these	observations,	Tailwind	appends	a	checksum	in	the	log	after	every	object	update;	at	any	
point	 of	 time	 a	 checksum	 guarantees,	 with	 high	 probability,	 the	 integrity	 of	 all	 previous	 headers	
preceding	 it	 in	 the	 buffer.	 During	 failure-free	 time,	 a	 backup	 is	 ensured	 to	 always	 have	 the	 latest	
checksum	at	 the	 end	of	 the	 log.	On	 the	other	 hand,	 backups	have	 to	 compute	 the	offset	 themselves	
during	crash	recovery.	

4.4 Evaluation	
We	 implemented	 Tailwind	 on	 RAMCloud	 a	 low-latency	 in-memory	 key-value	 store.	 Tail-wind’s	 design	
perfectly	suits	RAMCloud	in	many	aspects:	

	 			 	 							

Page	25	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

Low	 latency.	 RAMCloud’s	 main	 objective	 is	 to	 provide	 low-latency	 access	 to	 data.	 It	 relies	 on	 fast	
networking	and	kernel-bypass	to	provide	a	fast	RPC	layer.	Tailwind	can	further	improve	RAMCloud	(PUT)	
latency	by	employing	one-sided	RDMA	without	any	additional	complexity	or	resource	usage.	

Replication	and	Threading	in	RAMCloud.	To	achieve	low	latency,	RAMCloud	dedicates	one	core	solely	
to	poll	network	requests	and	dispatch	them	to	worker	cores	(Figure	8).	Worker	cores	execute	all	client	
and	 system	 tasks.	 They	 are	 never	 preempted	 to	 avoid	 con-text	 switches	 that	 may	 hurt	 latency.	 To	
provide	strong	consistency,	RAMCloud	always	re-quests	acknowledgements	from	all	backups	for	every	
update.	With	the	above	threading-model,	replication	considerably	slows	down	the	overall	performance	
of	RAMCloud	as	we	have	showed	 in	the	 last	chapter.	Hence	Tailwind	can	greatly	 improve	RAMCloud’s	
CPU-efficiency	and	remove	replication	overheads.	

Log-structured	Memory.	RAMCloud	organizes	its	memory	as	an	append-only	log.	Mem-ory	is	sliced	into	
smaller	chunks	called	segments	that	also	act	as	the	unit	of	replication,	i.e.,	for	every	segment	a	primary	
has	 to	choose	a	backup.	Such	an	abstraction	makes	 it	easy	 to	 re-place	RAMCloud’s	 replication	system	
with	Tailwind.	Tailwind	checksums	can	be	appended	 in	the	 log-storage,	with	data,	and	replicated	with	
minimal	 changes	 to	 the	 code.	 In	 addition,	 RAMCloud	 provides	 a	 log-cleaning	 mechanism	 which	 can	
efficiently	clean	old	checksums	and	reclaim	their	storage	space.	

We	 compared	 Tailwind	 with	 RAMCloud	 replication	 protocol,	 focusing	 our	 analysis	 on	 three	 key	
questions	:	

Does	 Tailwind	 improve	 performance?	 Measurements	 show	 Tailwind	 reduces	 RAM-Cloud’s	 median	
write	latency	by	2x	and	99th	percentile	latency	by	3x	(Figure	10).	Tailwind	improves	throughput	by	70%	
for	write-heavy	workloads	and	by	27%	for	workloads	that	include	just	a	small	fraction	of	writes.	

Why	 does	 Tailwind	 improve	 performance?	 Tailwind	 improves	 per-server	 throughput	 by	 eliminating	
backup	 request	 processing	 (Figure	 11),	which	 allows	 servers	 to	 focus	 effort	 on	 processing	 user-facing	
requests.	

What	 is	 the	overhead	of	 Tailwind?	We	 show	 that	 Tailwind’s	 performance	 improvement	 comes	 at	 no	
cost.	Specifically,	we	measure	and	find	no	overhead	during	crash	recovery	compared	to	RAMCloud.	

Experimental	Setup	

Experiments	were	done	on	a	35	server	Dell	r320	cluster	on	the	CloudLab	[Clab]	testbed.	

We	used	three	YCSB	[ycsb]	workloads	to	evaluate	Tailwind:	update-heavy	(50%	PUTs,	50%	GETs),	read-
heavy	 (5%	PUTs,	95%	GETs),	and	update-only	 (100%	PUTs).	We	 intitially	 inserted	20	million	objects	of	
100	B	plus	30	B	 for	 the	key.	Afterwards,	we	 ran	up	 to	30	client	machines.	Clients	generated	 requests	
according	 to	 a	 Zipfian	 distribution	 (q	 =	 0.99).	 Objects	 were	 uniformly	 inserted	 in	 active	 servers.	 The	
replication	 factor	 was	 set	 to	 3	 and	 RDMA	 buffers	 size	 was	 set	 to	 8	 MB.	 Every	 data	 point	 in	 the	
experiments	is	averaged	over	3	runs.	

	 			 	 							

Page	26	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

RAMCloud’s	 RPC-based	 replication	 protocol	 served	 as	 a	 baseline	 for	 comparison.	 Note	 that,	 in	 the	
comparison	with	Tailwind,	we	refer	to	RAMCloud’s	replication	protocol	as	RAM-Cloud	for	simplicity.	

Performance	Improvement	
The	primary	goal	of	Tailwind	is	to	accelerate	basic	operations’	throughput	and	latency.	To	demonstrate	
how	Tailwind	 improves	performance	we	 show	Figure	9,	 i.e.	 throughput	per	 server	as	we	 increase	 the	
number	of	clients.	When	client	operations	consist	of	5%	PUTs	and	95%	GETs,	RAMCloud	achieves	500	
KOp/s	per	server	while	Tailwind	reaches	up	to	635	KOp/s.	Increasing	the	update	load	enables	Tailwind	to	
further	 improve	 the	 throughput.	For	 instance	with	50%	PUTs	Tailwind	sustains	340	KOp/s	against	200	
KOp/s	 for	RAM-Cloud,	which	 is	 a	 70%	 improvement.	With	update-only	workload,	 improvement	 is	 not	
fur-ther	increased:	in	this	case	Tailwind	improves	the	throughput	by	65%.	

Tailwind	can	improve	the	number	of	read	operations	serviced	by	accelerating	updates.	CPU	cycles	saved	
allow	servers	(that	are	backups	as	well)	to	service	more	requests	in	general.	

	

Figure	10	shows	that	update	latency	is	also	considerably	improved	by	Tailwind.	Under	light	load	Tailwind	
reduces	median	and	99th	percentile	latency	of	an	update	from	16	µs	to	11.8	µs	and	from	27	µs	to	14	µs	
respectively.	 Under	 heavy	 load,	 i.e.	 500	 KOp/s	 Tailwind	 reduces	median	 latency	 from	 32	 µs	 to	 16	 µs	
compared	to	RAMCloud.	Under	the	same	load	tail	latency	is	even	further	reduced	from	78	µs	to	28	µs.		

	

Figure	9.	Throughput	per	server	in	a	4-server	cluster	

	 			 	 							

Page	27	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

Figure	10.	(a)	Median	latency	and	(b)	99th	percentile	latency	of	PUT	operations	when	varying	the	load.	

Tailwind	 can	 effectively	 reduce	 end-to-end	 client	 latency.	 With	 reduced	 acknowledge-ments	 waiting	
time,	and	more	CPU	power	to	process	requests	faster,	servers	can	sustain	a	very	low	latency	even	under	
heavy	concurrent	accesses.	

Gains	as	Backup	Load	Varies	

Since	 all	 servers	 in	 RAMCloud	 act	 as	 both	 backups	 and	 primaries,	 Tailwind	 accelerates	 normal-case	
request	 processing	 indirectly	 by	 eliminating	 the	 need	 for	 servers	 to	 actively	 process	 replication	
operations.	Figure	11	shows	the	 impact	of	 this	effect.	 In	each	 trial	 load	 is	directed	at	a	subset	of	 four	
RAMCloud	storage	nodes;	“Active	Primary	Servers”	indicates	the	number	of	storage	nodes	that	process	
client	 requests.	 Nodes	 do	 not	 replicate	 data	 to	 themselves,	 so	 when	 only	 one	 primary	 is	 active	 it	 is	
receiving	no	backup	operations.	All	of	the	active	primary’s	backup	operations	are	directed	to	the	other	
three	 otherwise	 idle	 nodes.	 Note	 that,	 in	 this	 figure,	 throughput	 is	 per-active-primaries.	 So,	 as	more	
primaries	are	added,	the	aggregate	cluster	throughput	increases.	

	

Figure	11.	Throughput	per	active	primary	servers	when	running	(a)	YCSB-B	(b)	YCSB-A	(c)	WRITE-ONLY	with	30	clients.	

As	 client	 GET/PUT	 operations	 are	 directed	 to	 more	 nodes	 (more	 active	 primaries),	 each	 node	 slows	
down	 because	 it	 must	 serve	 a	 mix	 of	 client	 operations	 intermixed	 with	 an	 in-creasing	 number	 of	

	 			 	 							

Page	28	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

incoming	 backup	 operations.	 Enough	 client	 load	 is	 offered	 (30	 clients)	 so	 that	 storage	 nodes	 are	 the	
bottleneck	 at	 all	 points	 in	 the	 graphs.	 With	 four	 active	 pri-maries,	 every	 server	 node	 is	 saturated	
processing	client	requests	and	backup	operations	for	all	client-issued	writes.	

Even	when	only	5%	of	client-issued	operations	are	writes	(Figure	11a),	Tailwind	 in-creasingly	 improves	
performance	as	backup	 load	on	nodes	 increases.	When	a	primary	doesn’t	perform	backup	operations	
Tailwind	improves	throughput	3%,	but	that	increases	to	27%	when	the	primary	services	its	fair	share	of	
backup	operations.	The	situation	is	sim-ilar	when	client	operations	are	a	50/50	mix	of	reads	and	writes	
(Figure	11b)	and	when	clients	only	issue	writes	(Figure	11c).	

As	 expected,	 Tailwind	 enables	 increasing	 gains	 over	 RAMCloud	 with	 increasing	 load,	 since	 RDMA	
eliminates	 three	 RPCs	 that	 each	 server	 must	 handle	 for	 each	 client-issued	 write,	 which,	 in	 turn,	
eliminates	worker	core	stalls	on	the	node	handling	the	write.	

In	short,	the	ability	of	Tailwind	to	eliminate	replication	work	on	backups	translates	into	more	availability	
for	normal	request	processing,	and,	hence,	better	GET/PUT	performance.	

Resource	Utilization	

The	 improvements	 above	 have	 shown	 how	 Tailwind	 can	 improve	 RAMCloud’s	 baseline	 replication	
normal-case.	The	main	 reason	 is	 that	operations	 contend	with	backup	operations	 for	worker	 cores	 to	
process	 them.	Figure	11a	 illustrates	 this:	we	vary	 the	offered	 load	 (updates-only)	 to	a	4-server	cluster	
and	report	aggregated	active	worker	cores.	For	example,	to	service	450	KOp/s,	Tailwind	uses	5.7	worker	
cores	while	RAMCloud	requires	17.6	active	cores,	that	is	3x	more	resources.	For	the	same	scenario,	we	
also	show	Figure	11b	that	shows	the	aggregate	active	dispatch	cores.	Interestingly,	gains	are	higher	for	
dispatch,	e.g.,	to	achieve	450	KOp/s,	Tailwind	needs	only	1/4	of	dispatch	cores	used	by	RAMCloud.	

Both	observations	confirm	that,	 for	updates,	most	of	the	resources	are	spent	 in	processing	replication	
requests.	To	get	a	better	view	on	the	impact	when	GET/PUT	operations	are	mixed,	we	show	Figure	12.	

	

Figure	12.	Total	dispatch	and	worker	cores	utilization	per	server	in	a	4-server	cluster.	“Replication”	in	worker	graphs	represent	
the	fraction	of	worker	load	spent	on	processing	replication	requests	on	primary	servers	

	 			 	 							

Page	29	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

It	 represents	 active	 worker	 and	 dispatch	 cores,	 respectively,	 when	 varying	 clients.	 When	 requests	
consist	of	updates	only,	Tailwind	reduces	worker	cores	utilization	by	15%	and	dispatch	core	utilization	by	
50%.	This	 is	stems	from	the	fact	that	a	 large	fraction	of	dispatch	 load	 is	due	to	replication	requests	 in	
this	 case.	With	50/50	 reads	and	writes,	worker	utilization	 is	 slightly	 improved	 to	20%	while	 it	 reaches	
50%	when	the	workload	consists	of	5%	writes	only.	

Interestingly,	dispatch	utilization	is	not	reduced	when	reducing	the	proportion	of	writes.	With	5%	writes,	
Tailwind	utilizes	even	more	dispatch	than	RAMCloud.	This	is	actually	a	good	sign,	since	read	workloads	
are	dispatch-bound.	Therefore,	Tailwind	allows	RAMCloud	to	process	even	more	reads	by	accelerating	
write	operations.	This	 is	 implicitly	shown	 in	Figure	12	with	“Replication”	graphs	that	represent	worker	
utilization	due	to	waiting	for	replication	requests.	For	update-only	workloads,	RAMCloud	spends	80%	of	
the	worker	 cycles	 in	 replication.	With	 5%	writes,	 RAMCloud	 spends	 62%	of	worker	 cycles	waiting	 for	
replication	 requests	 to	 complete	 against	 49%	 with	 Tailwind.	 The	 worker	 load	 difference	 is	 spent	 on	
servicing	read	requests.	

Scaling	with	Available	Resources	

We	 also	 investigated	 how	 Tailwind	 improves	 internal	 server	 parallelism	 (i.e.	 more	 cores).	 Figure	 13	
shows	 throughput	 and	worker	 utilization	with	 respect	 to	 available	worker	 cores.	 Clients	 (fixed	 to	 30)	
issue	50/50	reads	and	writes	to	4	servers.	We	do	not	count	the	dispatch	core	with	available	cores,	since	
it	is	always	available.	With	a	single	worker	core	per	machine,	RAMCloud	serves	430	KOp/s	compared	to	
660	 KOp/s	 for	 Tailwind	 with	 respectively	 4.5	 and	 3.5	 worker	 cores	 utilization.	 RAMCloud	 can	 over-
allocate	 resources	 to	 avoid	 deadlocks,	 explaining	 why	 it	 can	 go	 above	 the	 core	 limit.	 Tailwind	 scales	
better	when	increasing	the	available	worker	cores.	RAMCloud	does	not	achieve	more	throughput	with	
more	than	5	available	cores.	Tailwind	improves	throughput	up	to	all	7	available	cores	per	machine.	

	

	

Even	 though	 both	 RAMCloud	 and	
Tailwind	exhibit	a	plateau,	this	is	actually	
due	 to	 the	 dispatch	 thread	 limit	 that	
cannot	 take	 more	 requests	 in.	 This	
suggests	 that	 Tailwind	 allows	 RAMCloud	
to	better	take	advantage	of	per-machine	
parallelism.	 In	 fact,	 by	 eliminating	 the	
replication	 requests	 from	 dispatch,	
Tailwind	 allows	 more	 client-issued	
requests	in	the	system.	

Impact	on	Crash	Recovery	 Figure	13.	Throughput	(lines)	and	total	worker	cores	(bars)	as	a	function	
of	available	cores	per	machine.	Values	are	aggregated	over	4	servers.	

	 			 	 							

Page	30	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

	

Tailwind	 aims	 to	 accelerate	 replication	
while	 keeping	 strong	 consistency	
guarantees	and	without	impacting	recovery	
performance.	 Figure	 14	 shows	 Tailwind’s	
recovery	 perfor-mance	 against	 RAMCloud.	
In	this	setup	data	is	inserted	into	a	primary	
replica	 with	 possi-bility	 to	 replicate	 to	 10	
other	 backups.	 RAMCloud’s	 random	
backup	 selection	 makes	 it	 so	 that	 all	
backups	 will	 end	 up	 with	 approximately	
equal	share	of	backup	data.	After	 inserting	

all	data,	the	primary	kills	itself,	triggering	
crash	recovery.	

As	expected,	Tailwind	almost	introduces	no	overhead.	For	instance,	to	recover	1	million	100	B	objects,	it	
takes	 half	 a	 second	 for	 Tailwind	 and	 0.48	 s	 for	 RAMCloud.	 To	 recover	 10	million	 100	B	 objects,	 Both	
Tailwind	and	RAMCloud	take	roughly	2.5	s.	

Tailwind	must	reconstruct	metadata	during	recovery,	but	this	only	accounts	for	a	small	 fraction	of	the	
total	work	of	recovery.	Moreover,	reconstructing	metadata	is	only	necessary	for	open	buffers,	i.e.	still	in	
memory.	 This	 can	be	orders	 of	magnitude	 faster	 than	 loading	 a	 buffer	 previously	 flushed	on	 SSD,	 for	
example.	

4.5 Discussion	

Scalability	
A	 current	 limitation	 of	 one-sided	 RDMAs	 is	 due	 to	 the	 requirement	 of	 reliable-connected	 QPs.	 Since	
information	 on	 QPs	 is	 cached	 at	 the	 NIC	 level,	 increasing	 the	 number	 of	 con-nections	 (e.g.	 scaling	
number	 of	 servers)	 over	NIC	 cache	 size	 causes	 one-sided	 RDMA	per-formance	 to	 collapse	 [Kal16].	 By	
targeting	only	replication	requests,	Tailwind	is	not	subject	to	such	a	limitation;	in	most	common	storage	
systems	data	 is	partitioned	into	chunks	that	are	replicated	several	times.	At	any	moment,	only	a	small	
set	of	backups	is	replicated	to.	

Metadata	Space	Overhead	

In	its	current	implementation,	Tailwind	appends	metadata	after	every	write	to	guarantee	RDMA	writes	
atomicity.	 Although	 this	 approach	 appears	 to	 introduce	 space	 over-head,	 RAMCloud’s	 log-cleaning	
mechanism	efficiently	removes	old	checksums	without	per-formance	impact	[RC15].	

Figure	14.	Time	to	recover	1	and	10	million	objects	with	10	backups	

	 			 	 							

Page	31	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

A	different	implementation	could	consist	in	appending	the	checksum	with	log-backup	data	instead.	This	
would	 completely	 remove	 space	 Tailwind	 space	 overheads.	However,	 this	would	 raise	 a	 challenge	on	
backups:	how	to	decide	backup	buffers	size.	In	the	current	imple-mentation	primary	DRAM	log-storage	
and	buffers	on	backups	are	the	same.	If	checksums	were	appended	to	backup-data	only,	then	buffers	on	
backups	will	not	have	the	same	size	as	segments	on	primaries.	A	fixed-size	buffer	with	only	small	objects	
will	 tend	 to	have	more	checksums	 than	a	buffer	which	contains	 large	objects,	 therefore	more	backup	
data	could	be	stored	on	the	latter.	

In	general,	Tailwind	adds	only	4	bytes	per	object	which	is	much	smaller	than,	for	exam-ple,	RAMCloud	
headers	(30	bytes).	

Applicability	
RDMA	 networks.	 Tailwind	 relies	 on	 RDMA-based	 networks	 to	 efficiently	 remove	 replication-CPU	
overheads.	Historically,	RDMA	has	been	supported	by	Infiniband-based	networks	only.	Recently,	RDMA	
is	supported	 in	Ethernet	 in	the	form	of	RoCE	or	 iWARP.	More	 importantly,	recent	studies	suggest	that	
RDMA-based	networks	are	becoming	common	in	modern	datacenters.	

Note	that	Tailwind	improves	clients	end-to-end	latency	but	does	not	require	any	change	on	their	side.	
Tailwind	only	requires	RDMA-based	networks	on	the	storage	system	side	to	operate.	

Distributed	logging.	Distributed	logging	is	widely	used	approach	to	redundancy	[Kafka].	Many	recent	in-
memory	key-value	stores	achieve	durability	and	availability	through	dis-tributed	 logging	as	well	 [RC15,	
Farm].	Tailwind	 leverages	 log-backup	data-layout	 in	order	 to	ensure	 the	atomicity	of	one-sided	RDMA	
writes.	

Limitations	

Tailwind	 is	designed	to	keep	the	same	system-level	consistency	guarantees.	 It	synchronously	waits	 for	
the	acknowledgement	from	the	remote	backups	NICs	in	order	to	return	to	the	client.	Although	it	can	do	
work	in	parallel,	worker	cores	have	to	stall	waiting	until	the	QP	generates	a	work	completion	in	order	to	
move	 to	process	another	write	 request.	 For	 instance,	multiple	updates	 can	be	queued	and	processed	
together.	A	better	approach	would	be	to	pipeline	replication	requests.	Worker	cores	would	be	able	to	
perform	some	additional	work	and	be	notified	when	a	work	completion	pops	from	the	QP.	RAMCloud’s	
current	 RPC-based	 replication	 protocol	 is	 not	 pipelined	 neither	 [RC15]	 since	 its	 goal	 was	 to	 provide	
correctness	and	be	able	to	reason	about	fault-handling.	

4.6 Summary	
Tailwind	 is	 the	 first	 replication	protocol	 that	 fully	exploits	one-sided	RDMA;	 it	 improves	per-formance	
without	 sacrificing	 durability,	 availability,	 or	 consistency.	 Tailwind	 leaves	 backups	 unaware	 of	 RDMA	
writes	 as	 they	 happen,	 but	 it	 provides	 them	with	 a	 protocol	 to	 rebuild	metadata	 in	 case	 of	 failures.	
When	implemented	in	RAMCloud,	Tailwind	substantially	im-proves	throughput	and	latency	with	only	a	
small	fraction	of	resources	originally	needed	by	RAMCloud.	

	 			 	 							

Page	32	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

With	 Tailwind,	 we	 make	 a	 step	 forward	 towards	 providing	 better	 efficiency	 in	 in-memory	 storage	
systems.	 As	 we	 show	 in	 Chapter	 2,	 replication	 is	 expensive	 in	 in-memory	 storage	 systems,	 and	 it	
negatively	 impacts	 the	 energy	 efficiency	 and	 performance.	 Tailwind	 is	 a	 general	 design	 that	 can	 be	
applied	to	replicate	data	for	any	in-memory	storage	system.	

5 Using	Artificial	Intelligence	to	Optimize	Big	Data	Architectures	

5.1 Context	and	problem	
The	 overwhelming	 amount	 of	 data	 that	 needs	 to	 be	 processed	 nowadays	 has	 driven	 the	 design	 of	
increasingly	complex	distributed	systems.	This	complexity	 is	 further	exacerbated	by	new	decentralised	
approaches,	which	process	the	data	near	where	it	is	generated,	such	as	Fog	or	Edge	computing.	Having	
full	control	of	these	infrastructures	becomes	a	challenge	even	for	the	most	experienced	administrators,	
as	 there	 are	many	 heterogeneous	 technologies	 and	 factors	 involved.	 Usually,	 administrators	 follow	 a	
process	 that	 involves	 using	monitoring	 tools	 and	 browsing	 through	 logs	 in	 order	 to	 find	 insights	 that	
explain	 events	 happening	 in	 the	 system.	 Instead,	 this	 cumbersome	process	 can	 be	 partially	 or	 totally	
automatised	through	the	use	of	artificial	intelligence	techniques	(AI)	that	extract	these	insights	from	all	
the	incoming	monitored	information	following	a	typical	data	science	workflow.	In	this	work,	we	propose	
a	series	of	AI	models	that	are	able	to	solve	some	of	the	common	problems	that	administrators	find	 in	
these	 kind	 of	 systems.	 Namely,	 we	 focus	 on	 optimising	 the	 task	 parallelisation	 of	 Big	 Data	 jobs	 and	
performing	root	cause	analysis	for	microservice	architectures.	

5.2 Optimisation	of	task	parallelisation	of	Big	Data	jobs	
Planning	 big	 data	 processes	 effectively	 on	 cloud	 and	 HPC	 platforms	 can	 become	 problematic.	 They	
involve	 complex	 ecosystems	 where	 developers	 need	 to	 discover	 the	 main	 causes	 of	 performance	
degradation	in	terms	of	time,	cost	or	energy.	However,	processing	collected	logs	and	metrics	can	be	a	
tedious	and	difficult	 task.	 In	addition,	 there	are	 several	parameters	 that	 can	be	adjusted	and	have	an	
important	impact	on	application	performance.	One	of	the	most	important	challenges	is	finding	the	best	
parallelization	strategy	for	a	particular	application	running	on	a	parallel	computing	framework.	Big	data	
platforms	 like	 Spark	 or	 Flink	 use	 JVM’s	 distributed	 along	 the	 cluster	 to	 perform	 computations.	
Parallelization	policies	can	be	controlled	programmatically	through	APIs	or	by	tuning	parameters.	These	
policies	are	normally	left	as	their	default	values	by	the	users.	However,	they	control	the	number	of	tasks	
running	 concurrently	 on	 each	machine,	 which	 constitutes	 the	 foundation	 of	 big	 data	 platforms.	 This	
factor	can	affect	both	correct	execution	and	application	execution	time.	Nonetheless,	we	lack	concrete	
methods	to	optimize	the	parallelism	of	an	application	before	its	execution.	This	is	specially	challenging	
considering	that	the	concurrent	access	to	disk	by	these	parallel	tasks	can	create	a	bottleneck	if	it	is	not	
optimised.		

	

	 			 	 							

Page	33	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

We	propose	a	method	to	recommend	optimal	parallelization	settings	to	users	depending	on	the	type	of	
application.	 We	 solve	 this	 optimization	 problem	 through	 machine	 learning,	 based	 on	 system	 and	
application	 metrics	 collected	 from	 previous	 executions.	 This	 way,	 we	 can	 detect	 and	 explain	 the	
correlation	between	an	application,	 its	 level	of	parallelism	and	 the	observed	performance.	The	model	
keeps	 learning	 from	 the	 executions	 in	 the	 cluster,	 becoming	 more	 accurate	 and	 providing	 several	
benefits	to	the	user,	without	any	considerable	overhead.	 In	addition,	we	also	consider	executions	that	
failed	 and	 provide	 new	 configurations	 to	 avoid	 these	 kinds	 of	 errors.	 Finally,	 bottlenecks	 related	 to	
concurrent	access	to	disk	from	various	tasks	are	eliminated	thanks	to	the	optimal	parallelism.		

The	benefits	of	an	optimal	task	parallelisation	were	proven	on	a	series	of	experiments	in	the	Grid’5000	
testbed.	 We	 build	 a	 benchmark	 that	 is	 a	 combination	 of	 Spark-bench,	 Bigdatabench	 and	 some	
workloads	that	we	implemented	on	our	own.	We	run	all	the	applications	of	this	unified	benchmark	with	
three	different	file	sizes	as	we	want	to	check	how	the	model	reacts	when	executing	the	same	application	
with	different	amounts	of	data.	These	executions	generate	a	series	of	metrics	that	we	use	to	train	and	
evaluate	a	machine	learning	model	that	has	as	inputs	the	metrics,	the	parallelism	configuration	and	the	
duration	 of	 the	 workload.	 The	 final	 goal	 is	 to	 be	 able	 to	 predict	 the	 effect	 of	 different	 parallelism	
configurations	on	the	duration	of	the	workload	depending	on	its	metrics	(the	profile	of	the	application).	
The	overhead	of	applying	the	model	is	minimum,	and	the	improvement	in	the	workloads	runtime	goes	
up	to	50%	for	graph	processing	processes.	This	 is	a	 first	step	towards	optimising	the	access	 to	data	 in	
distributed	computing	platforms.	

5.3 Root	Cause	Analysis	for	Microservice	Architectures	
As	 many	 industries	 increasingly	 rely	 on	 information	 systems	 to	 operate	 efficiently,	 software	
development	 and	 architectures	 have	 evolved	 in	 different	 directions.	 Virtualisation	 has	 gained	
momentum	in	the	last	decade	thanks	to	the	ability	of	cloud	providers	to	offer	Infrastructure	as	a	Service	
(IaaS)	 to	 their	 clients.	 The	 latest	 step	 in	 virtualization	 has	 been	 containerisation.	Industry	 has	
acknowledged	all	 the	containers	benefits,	 specially	 thanks	 to	 the	adoption	of	 technologies	 like	Docke,	
with	 DevOps	 and	 microservices	 architectures	 becoming	 growing	 trends	 and	 common	 practices.	 The	
philosophy	behind	microservices	consists	of	breaking	the	system	logic	into	different,	small	units	where	
each	 one	 has	 a	 single	 task	 or	 responsibility.	 The	 different	 units	 or	 microservices	 communicate	 and	
cooperate	with	each	other	to	provide	the	system	functionality	as	a	whole.	Any	of	the	aforementioned	
units	 of	 logic	 is	 executed	 inside	 a	 container.	Coordinating	 and	 scaling	 these	 containers	 require	 an	
orchestrating	 unit,	 specially	 if	 we	 want	 to	 deploy	 them	 in	 a	 distributed	 infrastructure	 with	 several	
machines.	 Tools	 like	 Kubernetes	 or	 DC/OS	 have	 filled	 this	 gap.	 These	 platforms	 have	 self-healing	
features,	where	unhealthy	or	faulty	containers	can	be	relaunched,	or	containers	migrated	to	a	different	
machine	 in	case	one	of	 their	hosts	dies.	But	establishing	the	root	cause	of	 these	 failures	can	be	really	
complex,	specially	when	we	have	a	network	of	different	microservices	that	depend	on	each	other.	The	
troubleshooting	process	normally	involves	a	tedious	search	through	logs	across	the	different	containers,	
trying	to	find	the	faulty	piece	in	the	chain.	

	 			 	 							

Page	34	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

In	a	second	step	of	our	work,	we	present	a	graph-based	method	to	perform	root	cause	analysis	(RCA)	in	
such	a	microservice	architecture.	We	argue	that	a	graph	representation	of	the	system	is	able	to	capture	
important	information	for	RCA,	like	the	topology	of	the	architecture	or	the	different	connections,	both	
logical	and	physical,	between	elements	in	the	system.	Based	on	this	graph	representation,	we	propose	a	
RCA	system	that	is	able	to	match	an	anomalous	region	in	the	system,	represented	as	a	subgraph	A,	with	
a	 similar	 anomalous	 graph	 B	 from	 the	 past	 that	 has	 already	 been	 troubleshooted	 by	 an	 expert.	 This	
similarity	calculation	relies	on	an	inexact	matching	function	that	finds	an	optimal	mapping	between	the	
nodes	 and	edges	of	 graph	A	and	graph	B.	 To	 solve	 this	 optimisation	problem	we	apply	AI	 techniques	
such	as	A*	or	Hill	Climbing.		

To	 evaluate	 the	 accuracy	 of	 this	 RCA	 technique,	we	 create	 an	 experimental	 environment	 where	 we	
monitor	the	execution	of	three	different	microservice	architectures	commonly	seen	in	industry	and	we	
inject	 six	 types	of	 anomalies.	All	 the	monitored	 information	 is	 processed	 in	order	 to	build	 the	 graphs	
that	will	be	passed	onto	our	RCA	framework	to	classify	these	anomalies	 into	their	root	cause.	Overall,	
our	system	achieves	a	83%	classification	accuracy.	We	also	compare	these	results	with	other	methods	
that	do	not	consider	the	topology	of	the	system	and	the	elements	around	the	anomaly.	To	achieve	that,	
we	train	a	boosted	classification	trees	model	with	a	dataset	that	contains	the	metrics	for	the	anomalous	
nodes	as	features	and	the	anomaly	that	was	induced	in	that	node	as	the	classification	label.	The	results	
show	how	our	graph-based	approach	improves	the	results	of	a	machine	learning	method	by	16	points.	
In	 addition,	 the	 system	 is	 easily	 interpretable	 and	 it	 can	 accept	 feedback	 from	 the	 user.	 Many	
monitoring	tools	adopt	a	graph	approach	to	show	the	monitored	information	gathered	and	we	believe	
that	such	an	RCA	approach	could	be	a	valuable	addition	to	facilitate	the	performance	and	mantainance	
of	microservice	architectures.	

6 References	
	
[Aga13]	 Agarwal,	 S.,	Mozafari,	 B.,	 Panda,	 A.,	Milner,	 H.,	Madden,	 S.,	 &	 Stoica,	 I.	 (2013).	 BlinkDB:	 Queries	 with	

Bounded	 Errors	 and	 Bounded	 Response	 Times	 on	 Very	 Large	 Data.	 Eurosys’13,	 29–42.	
http://doi.org/10.1145/2465351.2465355	

[Aki15]	Tyler	Akidau,	Robert	Bradshaw,	Craig	Chambers,	Slava	Chernyak,	Rafael	J.	Fernandez-Moctezuma,	Reuven	
Lax,	Sam	McVeety,	Daniel	Mills,	Frances	Perry,	Eric	Schmidt,	Sam	Whittle.	The	Dataflow	Model:	A	Practical	
Approach	 to	Balancing	Correctness,	 Latency,	 and	Cost	 in	Massive-Scale,	Unbounded,	Out-of-Order	Data	
Processing,	Proc.	VLDB	Endow.,	August	2015	

[Aki16a]	Tyler	 Akidau,	 The	 Evolution	 of	 Massive-Scale	 Data	 Processing	
https://docs.google.com/presentation/d/13YZy2trPugC8Zr9M8_TfSApSCZBGUDZdzi-
WUz95JJw/present?slide=id.g63ca2a7cd_0_527	

[Ale11]	A.	Alexandrov	et	al.,	“MapReduce	and	PACT	-	comparing	data	parallel	programming	models”	in	
Proceedings	of	the	14th	Conference	on	Database	Systems	for	BTW	2011.	Kaiserslautern,	Germany,	pp.	
25–44.	

[Apex]		 http://apex.apache.org/		

	 			 	 							

Page	35	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

[Arm15]	Armbrust,	M.,	Ghodsi,	 A.,	 Zaharia,	M.,	 Xin,	 R.	 S.,	 Lian,	 C.,	 Huai,	 Y.,	…	 Franklin,	M.	 J.	 (2015).	 Spark	 SQL.	
Proceedings	of	the	2015	ACM	SIGMOD	International	Conference	on	Management	of	Data	-	SIGMOD	’15,	
1383–1394.	http://doi.org/10.1145/2723372.2742797	

[Ash09]	 	 Thusoo,	 A.,	 Sarma,	 J.	 Sen,	 Jain,	 N.,	 Shao,	 Z.,	 Chakka,	 P.,	 Anthony,	 S.,	 …	 Murthy,	 R.	 (2009).	 Hive	 -	 A	
Warehousing	 Solution	 Over	 a	 Map-Reduce	 Framework.	 Sort,	 2,	 1626–1629.	
http://doi.org/10.1109/ICDE.2010.5447738	

[Bdb]	 	 	 Michael	 A.	 Olson,	 Keith	 Bostic,	 and	 Margo	 Seltzer.	 1999.	 Berkeley	 DB.	 In	 Proceedings	 of	 the	 annual	
conference	on	USENIX	Annual	 Technical	 Conference	 (ATEC	 '99).	USENIX	Association,	Berkeley,	 CA,	USA,	
43-43.	

[Beam]	http://beam.apache.org/		
[Beam2]	http://beam.apache.org/documentation/runners/capability-matrix/		
[Bey16a]	https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101	
[Bey16b]	https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102		
[Bigt]		 Fay	Chang,	Jeffrey	Dean,	Sanjay	Ghemawat,	Wilson	C.	Hsieh,	Deborah	A.	Wallach,	Mike	Burrows,	Tushar	

Chandra,	Andrew	Fikes,	and	Robert	E.	Gruber.	2008.	Bigtable:	A	Distributed	Storage	System	for	Structured	
Data.	 ACM	 Trans.	 Comput.	 Syst.	 26,	 2,	 Article	 4	 (June	 2008),	 26	 pages.	 DOI:	
http://dx.doi.org/10.1145/1365815.1365816		

[Bra18]	 Álvaro	Brandón	Hernández,	María	S.	Perez,	Smrati	Gupta,	Victor	Muntés-Mulero.	Using	machine	learning	
to	optimize	parallelism	in	big	data	applications,	Future	Generation	Computer	Systems,	Volume	86,	2018,	
pages	1076-1092,	ISSN	0167-739X,	https://doi.org/10.1016/j.future.2017.07.003.	

[Car15]	 Paris	 Carbone,	 Gyula	 Fora,	 Stephan	 Ewen,	 Seif	 Haridi,	 Kostas	 Tzoumas.	 Lightweight	 Asynchronous	
Snapshots	for	Distributed	Dataflows,	2015,	https://arxiv.org/pdf/1506.08603.pdf	

[Cass]		 Avinash	 Lakshman	 and	 Prashant	 Malik.	 2010.	 Cassandra:	 a	 decentralized	 structured	 storage	 system.	
SIGOPS	Oper.	Syst.	Rev.	44,	2	(April	2010),	35-40.	DOI:	http://dx.doi.org/10.1145/1773912.1773922		

[Ceph]	 	 Sage	 A.	Weil,	 Scott	 A.	 Brandt,	 Ethan	 L.	 Miller,	 Darrell	 D.	 E.	 Long,	 and	 Carlos	 Maltzahn.	 2006.	 Ceph:	 a	
scalable,	 high-performance	 distributed	 file	 system.	 In	 Proceedings	 of	 the	 7th	 symposium	 on	 Operating	
systems	design	and	implementation	(OSDI	'06).	USENIX	Association,	Berkeley,	CA,	USA,	307-320.	

[Clab]		 Ricci	 Robert	 and	 Eide	 Eric.	 “Introducing	 CloudLab:	 Scientific	 Infrastructure	 for	 Advancing	 Cloud	
Architectures	and	Applications”.	In:	;login:	39.6	(2014),	pp.	36–38.	ISSN:	1045-9219.	

[Couch]	 	Jan	 Lehnardt	 J.	 Chris	 Anderson	 and	 Noah	 Slater.	 CouchDB:	 The	 Definitive	 Guide.	 O’Reilly,	 first	 edition	
edition,	2010	

[Data]		 https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-
science.html	 	

[Datb]		 https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-
datasets.html	

[Dea04]	Jeffrey	Dean	and	Sanjay	Ghemawat,	MapReduce:	Simplified	Data	Processing	on	Large	Clusters,	OSDI	2004,	
San	Francisco,	http://dl.acm.org/citation.cfm?id=1251254.1251264.		

[DEC]		 http://sites.computer.org/debull/A15dec/A15DEC-CD.pdf		
[DLog]	 “Apache	DistributedLog,”	http://bookkeeper.apache.org/distributedlog/.	
[Dynamo]	 Swaminathan	 Sivasubramanian.	 2012.	 Amazon	 dynamoDB:	 a	 seamlessly	 scalable	 non-relational	

database	service.	In	Proceedings	of	the	2012	ACM	SIGMOD	International	Conference	on	Management	of	
Data	(SIGMOD	'12).	ACM,	New	York,	NY,	USA,	729-730.	DOI:	http://dx.doi.org/10.1145/2213836.2213945	

[Farm]	 Dagojevic,	Castro	TRO,	M.	Farm:	Fast	remote	memory.	In	Proceedings	of	the	11th	USENIX	Conference	on	
Networked	Systems	Design	and	Implementation	(Berkeley,	CA,	USA,	2014),	NSDI’14,	USENIX	Association,	
pp.	401–414.	

[Flia]		 https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/table_api.html					

	 			 	 							

Page	36	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

[Flib]	 	https://cwiki.apache.org/confluence/display/FLINK/FlinkML%3A+Vision+and+Roadmap	
[Flink]		 http://flink.apache.org/	
[Flink2]		https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/index.html	
[FlinkS]		https://flink.apache.org/news/2016/05/24/stream-sql.html	
[G5K]	 “Grid5000,”	https://www.grid5000.fr.	
[Gelly]		 https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/libs/gelly/index.html	
[Gon14]	 Gonzalez,	 J.	 E.,	 Xin,	 R.	 S.,	 Dave,	 A.,	 Crankshaw,	 D.,	 Franklin,	 M.	 J.,	 Gonzalez,	 J.	 E.,	 …	 Stoica,	 I.	 (2014).	

GraphX:	Graph	Processing	 in	a	Distributed	Dataflow	Framework.	11th	USENIX	Symposium	on	Operating	
Systems	 Design	 and	 Implementation,	 599–613.	 Retrieved	 from						
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez	

[GraphX]	http://spark.apache.org/graphx/	
[Hada]	 	http://hadoop.apache.org/	
[Hadb]	 https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html	
[Hao14]	 Haoyuan	 Li,	 Ali	 Ghodsi,	 Matei	 Zaharia,	 Scott	 Shenker,	 Ion	 Stoica,	 Tachyon:	 Reliable,	 Memory	 Speed	

Storage	 for	 Cluster	 Computing	 Frameworks,	 SoCC	 2014,	 Seattle	 USA,	 pp.	 6:1--6:15,	
http://doi.acm.org/10.1145/2670979.2670985	

[Hbase]		Hbase,	https://hbase.apache.org/		
[Hdfs]	 	 	 	Konstantin	Shvachko,	Hairong	Kuang,	Sanjay	Radia,	and	Robert	Chansler.	2010.	The	Hadoop	Distributed	

File	System.	In	Proceedings	of	the	2010	IEEE	26th	Symposium	on	Mass	Storage	Systems	and	Technologies	
(MSST)	 (MSST	 '10).	 IEEE	 Computer	 Society,	 Washington,	 DC,	 USA,	 1-10.	 DOI:	
http://dx.doi.org/10.1109/MSST.2010.5496972	

[Heron]	https://blog.twitter.com/2015/flying-faster-with-twitter-heron		
[Igraph]		Infinite	Graph,	http://www.objectivity.com/products/infinitegraph/		
[Jai08]	Namit	Jain	et	al.	Towards	a	Streaming	SQL	Standard,	Proc.	VLDB	Endow.,	August	2008,	pages	1379--1390,	

http://dx.doi.org/10.14778/1454159.1454179.	
[Kafka]			https://kafka.apache.org/		
[Kafka1]	http://kafka.apache.org/intro	
[Kafka2]	http://data-artisans.com/kafka-flink-a-practical-how-to/	
[Kafka3]	https://spark.apache.org/docs/1.6.1/streaming-kafka-integration.html	
[Kal14]	 KALIA,	A.,	KAMINSKY,	M.,	AND	ANDERSEN,	D.	G.	Using	rdma	efficiently	for	key-value	services.	In	

Proceedings	of	the	2014	ACM	Conference	on	SIGCOMM	(New	York,	NY,	USA,	2014),	SIGCOMM	’14,	ACM,	
pp.	295–306.	

[Kal16]		 KALIA,	A.,	KAMINSKY,	M.,	AND	ANDERSEN,	D.	G.	Fasst:	Fast,	scalable	and	simple	distributed	transactions	
with	two-sided	(rdma)	datagram	rpcs.	In	Proceedings	of	the	12th	USENIX	Conference	on	Operating	
Systems	Design	and	Implementation	(Berkeley,	CA,	USA,	2016),	OSDI’16,	USENIX	Association,	pp.	185–
201.	

[Kul15]	 Sanjeev	 Kulkarni	 et	 al.	 Twitter	 Heron:	 Stream	 Processing	 at	 Scale,	 SIGMOD	 2015,	 Melbourne,	 Victoria,	
Australia,	pages	239--250,	http://doi.acm.org/10.1145/2723372.2742788	

[Lee15]	 C.	Lee,	S.	J.	Park,	A.	Kejriwal,	S.	Matsushita,	and	J.	Ousterhout,	“Implementing	Linearizability	at	Large	Scale	
and	Low	Latency,”	in	25th	SOSP.	ACM,	2015,	pp.	71–86.	

[Lev13]		http://blogs.cisco.com/security/big-data-in-security-part-ii-the-amplab-stack	
[Li17]	 LI,	B.,	RUAN,	Z.,	XIAO,	W.,	LU,	Y.,	XIONG,	Y.,	PUTNAM,	A.,	CHEN,	E.,	AND	ZHANG,	L.	Kv-direct:	High-

performance	in-memory	key-value	store	with	programmable	nic.	In	Proceedings	of	the	26th	Symposium	
on	Operating	Systems	Principles	(New	York,	NY,	USA,	2017),	SOSP	’17,	ACM,	pp.	137–152.	

	 			 	 							

Page	37	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

[Mar16]	Ovidiu-Cristian	Marcu,	Alexandru	Costan,	Gabriel	Antoniu,	Maria	S.	Perez-Hernandez,	Spark	versus	Flink:	
Understanding	 Performance	 in	 Big	 Data	 Analytics	 Frameworks,	 CLUSTER,	 Sept.	 2016,	 Taiwan,	 Taipei,	
https://hal.inria.fr/hal-01347638v2.	

[Mar18]	Ovidiu-Cristian	Marcu,	Alexandru	Costan,	Gabriel	Antoniu,	María	Pérez-Hernández,	Bogdan	Nicolae,	Radu	
Tudoran,	Stefano	Bortoli	.	KerA:	Scalable	Data	Ingestion	for	Stream	Processing.	In	ICDCS	2018	–	38th	IEEE	
International	Conference	on	Distributed	Computing	Systems,	Jul	2018,	Vienna,	Austria.	IEEE,	pp.1480-
1485,	2018.	

[Men16]	Meng,	X.,	Bradley,	J.,	Street,	S.,	Francisco,	S.,	Sparks,	E.,	Berkeley,	U.	C.,	…	Hall,	S.	(2016).	MLlib :	Machine	
Learning	in	Apache	Spark,	17,	1–7.	

[Mia17]	H.	Miao,	H.	Park,	M.	Jeon,	G.	Pekhimenko,	K.	S.	McKinley,	and	F.	X.	Lin,	“Streambox:	Modern	Stream	
Processing	on	a	Multicore	Machine,”	in	USENIX	ATC.	USENIX	Association,	2017,	pp.	617–629.	

[MLB]		 http://web.cs.ucla.edu/~ameet/mlbase_website/mlbase_website/index.html	
[MLlib]		 http://spark.apache.org/mllib/	
[Mongo]	https://www.mongo.com		
[Nat05]		http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html	
[Neo4j]		https://neo4j.com/		
[Nis13]	NISHTALA,	R.,	FUGAL,	H.,	GRIMM,	S.,	KWIATKOWSKI,	M.,	LEE,	H.,	LI,	H.	C.,	MCELROY,	R.,	PALECZNY,	M.,	

PEEK,	D.,	SAAB,	P.,	STAFFORD,	D.,	TUNG,	T.,	AND	VENKATARAMANI,	V.	Scaling	memcache	at	facebook.	In	
Presented	as	part	of	the	10th	USENIX	Symposium	on	Networked	Systems	Design	and	Im-plementation	
(NSDI	13)	(Lombard,	IL,	2013),	USENIX,	pp.	385–	398.	

[Pulsar]	 “Apache	Pulsar.”	https://pulsar.incubator.apache.org/.	
[RC11]	 D.	Ongaro,	S.	M.	Rumble,	R.	Stutsman,	J.	Ousterhout,	and	M.	Rosen-blum,	“Fast	Crash	Recovery	in	
RAMCloud,”	in	23rd	SOSP.	ACM,	2011,	pp.	29–41.	
[RC15]	 J.	Ousterhout,	A.	Gopalan,	A.	Gupta,	A.	Kejriwal,	C.	Lee,	B.	Montazeri,	D.	Ongaro,	S.	J.	Park,	H.	Qin,	M.	

Rosenblum,	S.	Rumble,	R.	Stutsman,	and	S.	Yang,	“The	RAMCloud	Storage	System,”	ACM	Trans.	Comput.	
Syst.,	vol.	33,	no.	3,	pp.	7:1–7:55,	Aug.	2015.	

[RC17]	 C.	Kulkarni,	A.	Kesavan,	R.	Ricci,	and	R.	Stutsman,	“Beyond	Simple	Request	Processing	with	RAMCloud,”	
IEEE	Data	Eng.,	2017.	

[Rey14]	 https://databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-of-sql-on-
spark.html	

[Samza]	http://samza.apache.org/		
[Shi15]			J.	Shi	et	al.,	“Clash	of	the	titans:	Mapreduce	vs.	spark	for	large	scale	data	analytics,”	Proc.	VLDB	Endow.,	

vol.	8,	pp.	2110–2121,	Sep.	2015,	http://dx.doi.org/10.14778/2831360.2831365	
[Spark]		 http://spark.apache.org/	
[SparqS]	http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html	
[Storm]		http://storm.apache.org/		
[Su17]	 SU,	M.,	ZHANG,	M.,	CHEN,	K.,	GUO,	Z.,	AND	WU,	Y.	Rfp:	When	rpc	is	faster	than	server-bypass	with	rdma.	

In	Proceedings	of	the	Twelfth	European	Conference	on	Computer	Systems	(New	York,	NY,	USA,	2017),	
EuroSys	’17,	ACM,	pp.	1–15.	

[Tal17]	 TALEB,	Y.,	IBRAHIM,	S.,	ANTONIU,	G.,	AND	CORTES,	T.	Characterizing	performance	and	energy-efficiency	
of	the	ram-cloud	storage	system.	In	2017	IEEE	37th	International	Confer-ence	on	Distributed	Computing	
Systems	(ICDCS)	(June	2017),	1488–1498.	

[Tal18]	 Yacine	Taleb,	Ryan	Stutsman,	Gabriel	Antoniu,	Toni	Cortes.	Tailwind:	Fast	and	Atomic	RDMA-based	
Replication.	In	ATC	‘18	–	USENIX	Annual	Technical	Conference,	Jul	2018,	Boston,	United	States.	pp.850-
863,	2018.	

	 			 	 							

Page	38	of	38	

		

MSCA-ITN-2014-ETN-642963	
D2.2	WP2	Final	Report	

[Tan09]		Stewart	Tansley,	Kristin	Michele	Tolle.	The	Fourth	Paradigm:	Data-intensive	Scientific	Discovery,	Microsoft	
Research,	2009	

[Tos14]		Ankit	 Toshniwal,	 Siddarth	 Taneja,	 Amit	 Shukla,	 Karthik	 Ramasamy,	 Jignesh	M.	 Patel*,	 Sanjeev	 Kulkarni,	
Jason	 Jackson,	Krishna	Gade,	Maosong	Fu,	 Jake	Donham,	Nikunj	Bhagat,	Sailesh	Mittal,	Dmitriy	Ryaboy.	
Storm	 @Twitter,	 SIGMOD	 2014,	 Snowbird,	 Utah,	 USA,	 pages	 147--156,	
http://doi.acm.org/10.1145/2588555.2595641	

[Tsa17]	TSAI,	S.-Y.,	AND	ZHANG,	Y.	Lite	kernel	rdma	support	for	datacenter	applications.	In	Proceedings	of	the	26th	
Symposium	on	Operating	Systems	Principles	(New	York,	NY,	USA,	2017),	SOSP	’17,	ACM,	pp.	306–324	

[Tud14]	 Radu	 Tudoran,	 Alexandru	 Costan,	 Olivier	 Nano,	 Ivo	 Santos,	 Hakan	 Soncu,	 Gabriel	 Antoniu.	 JetStream:	
Enabling	high	throughput	live	event	streaming	on	multi-site	clouds.	Future	Generation	Computer	Systems,	
Elsevier,	54:	274-291,	2016.	DOI	:	10.1016/j.future.2015.01.016	

[Ven17]	S.	Venkataraman,	A.	Panda,	K.	Ousterhout,	M.	Armbrust,	A.	Ghodsi,	M.	J.	Franklin,	B.	Recht,	and	I.	Stoica,	
“Drizzle:	Fast	and	Adaptable	Stream	Processing	at	Scale,”	in	26th	SOSP.	ACM,	2017,	pp.	374–389.	

[War09]		D.	Warneke	and	O.	Kao,	“Nephele:	Efficient	parallel	data	processing	 in	the	cloud,”	 in	Proceedings	of	the	
2nd	Workshop	on	Many-Task	Computing	on	Grids	and	Supercomputers	2009.	NY,	USA	Portland,	Oregon,	
8:1--8:10,	http://doi.acm.org/10.1145/1646468.1646476	

[Xin13]		Xin,	R.	S.,	Rosen,	J.,	Zaharia,	M.,	Franklin,	M.	J.,	Shenker,	S.,	Stoica,	I.,	…	Xin,	R.	S.	(2013).	Shark:	SQL	and	
rich	 analytics	 at	 scale.	 Proceedings	 of	 the	 2013	 International	 Conference	 on	 Management	 of	 Data	 -	
SIGMOD	’13,	13.	http://doi.org/10.1145/2463676.2465288	

[ycsb]		 Brian	F.	Cooper,	Adam	Silberstein,	Erwin	Tam,	et	al.	“Benchmarking	Cloud	Serving	Systems	with	YCSB”.	In:	
Proceedings	of	the	1st	ACM	Symposium	on	Cloud	Computing.	SoCC	’10.	Indianapolis,	Indiana,	USA,	2010,	
pp.	143–154.	ISBN:	978-1-4503-0036-0.	

[Zah12]		Matei	Zaharia,	Tathagata	Das,	Haoyuan	Li,	Scott	Shenker,	Ion	Stoica.	Discretized	Streams:	An	Efficient	and	
Fault-Tolerant	 Model	 for	 Stream	 Processing	 on	 Large	 Clusters.	 	HotCloud	 June	 2012,	 Boston,	 MA,	
http://dl.acm.org/citation.cfm?id=2342763.2342773	

[Zah12a]	Matei	Zaharia,	Mosharaf	Chowdhury,	Tathagata	Das,	Ankur	Dave,	Justin	Ma,	Murphy	McCauley,	Michael	
J.	 Franklin,	 Scott	 Shenker,	 Ion	Stoica,	Resilient	Distributed	Datasets:	A	 Fault-Tolerant	Abstraction	 for	 In-
Memory	Cluster	Computing,	NSDI	2012,	San	Jose,	http://dl.acm.org/citation.cfm?id=2228298.2228301	

		
	

